Status of IBF detector module with UV-light

Huirong Qi

Mar. 16th, 2017, IHEP

Manpower and activities of TPC module R&D

Huirong Qi, Yulian Zhang (PhD,IHEP), Haiyun Wang(PhD,IHEP), Yiming Cai(PhD,THU), Zhiwen Wen(PhD,IHEP)

Critical challenge: Ion Back Flow and Distortion

In the case of ILD-TPC

- Distortions by the primary ions at ILD are negligible
- Ions from the amplification will be concentrated in discs of about 1 cm thickness near the readout, and then drift back into the drift volume Shorter working time
- 3 discs co-exist and distorted the path of seed electron
- The ions have to be neutralized during the 200 ms period used gating system

In the case of CEPC-TPC

- Distortions by the primary ions at CEPC are negligible too
- More than 10000 discs co-exist and distorted the path of seed electron >10000 trains
- The ions have to be neutralized during the ~4us period continuously

Amplification ions@CEPC

Test of the new module

- **Test with GEM-MM module**
 - New assembled module
 - Active area: 100mm × 100mm
 - **A** X-tube ray and 55Fe source
 - **Bulk-Micromegas from Saclay**
 - Standard GEM from CERN
 - Additional UV light device
 - Avalanche gap of MM:128μm
 - □ Transfer gap: 2mm
 - Drift length:2mm~200mm
 - Mesh: 400LPI

Micromegas(Saclay)

GEM(CERN)

Cathode with mesh

GEM-MM Detector

Gain of GEM-MM module

- **Gain of the GEM-MM**
 - Gain simulation by Garfield++
 - Gain test with GEM-MM detector
 - Optimization operation high voltage
 - $\Box \quad V_{GEM} = 240 V / V_{MM} \text{ from } 300 V \text{ to } 400 V$
 - Good fit the value with simulation and measurement
 - □ Gain of GEM: 3~23
 - **Gain of GEM-MM: 100~10000**

Gain with MM at VGEM=240V

UV test of the new module

- □ UV lamp measurement
 - New designed and assembled UV test chamber
 - □ Active area: 100mm×100mm
 - **Deuterium lamp and aluminum film**
 - **Principle of photoelectric effect**
 - □ Wave length: 160nm~400nm
 - □ Fused silica: 99% light trans.@266nm

Deuterium lamp X2D2 lamp

Electric filed map in module

Diagram of the UV test with new module. 6 -

UV test -first step

- □ UV lamp measurement
 - pA current meter from Keithley
 - First step test about the current in mesh
 - **E_drift: 10~175V/cm**
 - □ ~43pA@175V/cm
 - Stable current with UV light
 - □ ~200V/cm@T2K operation gas

Electrons by photoelectric effect with Edrift

Photo of the new module in lab

Summary

Critical requirements for CEPC TPC modules

- Beam structure
- **Obvious distortion**
- **Continuous Ion Back Flow**

Some activities for the module

- Assembled detector module
- □ First results from the new detector module
- Some plans for the module

Thanks very much for your attention !