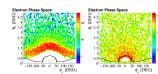
WIMP Study: New Whizard Setup & Request for Simulation

Moritz Habermehl

ILD Software / Analysis Meeting

8 March 2017

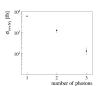

WIMP Search: Involved Processes

- signal
 - WIMP pair ⇒ "empty detector"
 - + ISR photon ⇒ "mono-photon channel"
 - not directly generated in Whizard
- dominant background processes
 - $\nu \bar{\nu} \gamma \Rightarrow$ used to produce WIMP events (reweigh)
 - Bhabha scattering
- required Whizard processes (100% polarised)
 - $\nu \bar{\nu} \gamma_{LR} \left(\nu_e \& \nu_\mu \& \nu_\tau \right)$
 - $\nu \bar{\nu} \gamma_{RL}$
 - $e^-e^+\gamma_{LR}$
 - $e^-e^+\gamma_{RI}$
 - $e^-e^+\gamma_{LL}$
 - $e^-e^+\gamma_{RR}$

Why new Samples?

- gap in Bhabha phase space
 - ever-since → also previous analyses
 - Whizard cut: invariant mass of incoming and outgoing e[±] was too large (4 GeV)
 - now lowered to 1 GeV
 - see talks in phone meetings → 13 July 2016

- wrong signal definition
 - Bhabha leptons could escape detector
 - new signal definition
 - see talk in phone meeting 25 Jan 2017
- photon treatment was not correct
- \Rightarrow new samples
 - generation (Whizard): me
 - simulation and reconstruction: request to be done centrally



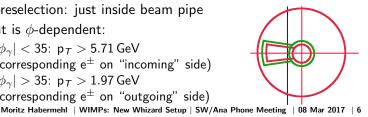
Photon Treatment in Whizard

ISR routine

- best cross-section
- only collinear photons → circe_recoil=false
- generates one "photon" per beam (not physical) → no cuts
- in matrix element
 - ullet description of non-collinear photons: correct number, energy, heta
 - separate processes for 1,2,3 photons
 - cuts on photons:
 - $p_T > 0.1 \,\text{GeV}$
 - $|\cos(\theta)| < 0.9999755 \leftrightarrow 7 \text{ mrad (outside of outgoing beam pipe)}$
 - \Rightarrow makes them potentially detectable
 - ⇒ avoid divergencies
 - choice of value is arbitrary ⇒ theory error by varying p_T between 0.05 and 2 GeV

Maximum Number of Photons

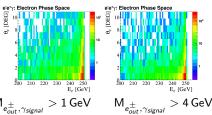
- include additional photon if cross-section is larger than Whizard uncertainty on process with one photon: $\sigma_{XX+n\gamma} > \delta\sigma_{XX+1\gamma}$
- $\nu\bar{\nu}\gamma$, $\nu\bar{\nu}\gamma\gamma$, $\nu\bar{\nu}\gamma\gamma\gamma$, $\nu\bar{\nu}\gamma\gamma\gamma\gamma$
- $e^-e^+\gamma$, $e^-e^+\gamma\gamma$, $e^-e^+\gamma\gamma\gamma$, maybe $e^-e^+\gamma\gamma\gamma\gamma$ (still running)
- for now: separate samples
- could be combined to $\nu\bar{\nu}+x\gamma$ and $e^-e^++x\gamma$


Signal Definition and Preselection Cuts

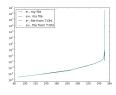
- preselection cuts on generator level
 - reduce phase space

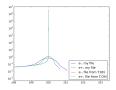
safety margin

Surety margin	signal definition	preselection
avoid Z return	$E_{\gamma} <$ 220 GeV	-
tracking	$ \cos(\theta_{\gamma}) < 0.996$	$ \cos(heta_\gamma) < 0.9975$
	$(heta > 5.13\mathrm{DEG})$	$(heta > 4.05\mathrm{DEG})$
distinguish from noise,	$p_{T,\gamma} > 2 \text{ or } > 5 \text{ GeV}$	1 GeV
ensure Bhabha detection	(in BCal coordinates)	


- θ in preselection: just inside beam pipe
- p_T cut is φ-dependent:
 - $|\phi_{\gamma}| < 35$: p_T > 5.71 GeV (corresponding e^{\pm} on "incoming" side)
 - $|\phi_{\gamma}| > 35$: p_T > 1.97 GeV (corresponding e^{\pm} on "outgoing" side)

Bhabhas: Invariant Mass Cuts


- Bhabhas need additional cuts to avoid divergencies
- invariant mass of all possible pairs of particles was set to 4 GeV previously
- $\bullet \ \ \mathsf{M}_{e_{out}^-,e_{out}^-} > 1\,\mathsf{GeV}$
- ${\sf M}_{e_{\it in}^\pm,e_{\it out}^\pm} > 1\,{\sf GeV}$: closed the gap
- $M_{e_{out}^{\pm},\gamma} > 1 \, \text{GeV}$
- $M_{e_{out},\gamma_{signal}}^{\pm} > 4 \, \text{GeV}$: e^{\pm} with high θ would be detected anyway



Versions and Preferences

- Whizard
 - latest version: 2.4.0
 - luminosity spectrum: using circe2 implementation with my input file

- simulation
 - Mokka
 - DBD detector (old L*)
- reconstruction
 - using BeamCalClusterReco (as in /v01-17-11/StandardConfig/current/bbudsc_3evt_stdreco.xml) Moritz Habermehl | WIMPs: New Whizard Setup | SW/Ana Phone Meeting | 08 Mar 2017

Processes for Request: Neutrino Pairs

$ u \bar{\nu} \gamma$	σ	t ₁₀₀₀₀	$\epsilon(sig)$	$\epsilon(cuts)$	Mokka ₁₀₀₀	Marlin ₁₀₀₀
1γ ,LR	23034	few sec	62.3%	61.7%	40 min	12 min
					18M	34M
1γ ,RL	1435	few sec	36.1%	34.9%	2h	23 min
					41M	77M
2γ ,LR	4642	1 min	67.4%	51.5%	2h	15 min
					28M	53M
2γ ,RL	438	1 min	50.7%	22.8%	4h	30 min
					50M	95M
3γ ,LR	475	few min	72.0%	41.0%	1h	20 min
					36M	69M
3γ ,RL	62	few min	60.5%	13.9%	3h	30 min
					58M	112M
4γ ,LR	33	1h:38	tbd	tbd	tbd	tbd
4γ ,RL	6	1h	tbd	tbd	tbd	tbd

Processes for Request: Bhabha Scattering

e^-e^+	σ	t ₁₀₀₀₀	$\epsilon(sig)$	ϵ (cuts)	Mokka ₁₀₀₀	Marlin ₁₀₀₀
1γ	117188	1 min	46.3%	0.3%	10h	1h:30
					100M	180M
2γ	11054	few min	56%	0.04%	11h	1h:30
					110M	220M
3γ	627	45 min	65%	0.03%	11h	2h
					125M	250M
4γ	?	?	?	?	?	?

- averaged over polarisations
- Mokka and Marlin: CPU time and output files for 1000 events

Summary

- requested event numbers
 - neutrinos: $500 \, \text{fb}^{-1} = 15,062,500 \, \text{events}$
 - Bhabhas: 10,000 events after cuts \rightarrow 4,000,000 10,000,000 events
- status
 - generation of events is ready
 - samples with many photons still need to be checked

