Characterizing Light Higgsinos from Natural SUSY at ILC $\sqrt{s} = 500$ GeV

51th general Meeting of the ILC Physics Working Group

CCCCCCCCCCC

K<mark>EK</mark> Apr 1<mark>5, 2017</mark>

Jacqueline Yan (KEK) On behalf of H. Baer (Univ of Oklahoma), M. Berggren, S.-L. Lehtinen, J. List (DESY), K. Fujii (KEK), T. Tanabe (Univ of Tokyo)

Outline

Motivation for searching light Higgsinos with compressed spectrum

- maintaining small electroweak fine tuning Δ EW (<~3%) requires $\mu \sim 100-300 \text{ GeV}$
- **Higgsino masses not too far from masses of W, Z, h (~100 GeV)** top and bottom squarks : few TeV, gluino mass: 2–4 TeV, 1st, 2nd generation squarks and sleptons : 5–30 TeV

ILC is expected to either discover or exclude natural SUSY

This full ILD simulation-based study demonstrates ILC's potential in discovery and precision measurement of 4 light Higgsinos within reach of ILC $\sqrt{s} \ge 250$ GeV, $\Delta M 4 - 21 \text{ GeV}$, just beyond reach of HL-LHC

Serve as a basis for future discussions of ILC run scenario in the case of new particles being discovered

using precise measurements of masses and cross as "input"

Benchmarks in this Study

ΔM complies with naturalness (no use of ISR tag)

Unit: GeV	ILC1	ILC2	nGMM1
M(N1)	102.7	148.1	151.4
M(N2)	124.0	157.8	155.8
ΔM(N2,N1)	21.3	9.7	4.4
M(C1)	117.3	158.3	158.7
ΔM(C1,N1)	14.6	10.2	7.3

Process (Pe-,Pe+)	ILC1	ILC2	nGMM1
C1C1 (-1,+1)	1799.9	1530.5	1520.6
C1C1 (+1,-1)	334.5	307.2	309.5
N1N2 (-1,+1)	490.9	458.9	463.5
N1N2 (+1,-1)	378.5	353.8	357.3

Event Generator: WHIZARD v1.95, DBD setup, TDR beam parameters

4 light Higgsinos

- √s = 500 GeV
- full ILD detector simulation

Good precision achievable even for challenging $\Delta\,M$ with soft leptons/jets

Cross sections for $\sqrt{s} = 500 \text{ GeV}$ Similar for all benchmarks

Event Selection

signal

How do these signals look in the detector? (1)

√s =500 GeV

How do these signals look in the detector? (2)

√s =500 GeV

Method to Extract Higgsino Mass and Cross Section

Status of Higgsino Study

currently finalizing results and working on paper

Advances after LCWS 2016 :

Did analysis for benchmark with smallest ΔM (< 5GeV)

Optimized signal selection and cuts

- to further **improve significance**
- to converge to a common set of analysis method for all benchmarks

some preliminary set of results will be shown today

Abstract submitted to Higgs and New Physics session of EPS-HP 2017 conference (July 5-12, 2017)

Higgsino Mass Precisions for N1N2 analysis

Combine "observables" (fitted edges) of multiple channels and apply χ^2 fit

From left polarization results of neutralino analysis (similar for chargino channel)

- Assuming 500 fb⁻¹: ILC1, ILC2 : 1-2% Mirage: 4-5%
- Assuming H20, 1600 fb⁻¹ ILC1, ILC2: better than 1% Mirage: 2-3%

Precision should improve by 1.5 – 2 X by treatment of $\gamma\gamma \rightarrow$ hadron bkg

(analysis also carried out for case of "no overlay" in Higgsino signal)

Cross section fit for N1N2 analysis

Summary

- Higgsinos in Natural SUSY framework well motivated theoretically and experimentally
- This study demonstrates measurement precision at ILC for Higgsinos with small ΔM (4-21 GeV), just beyond reach of HL-LHC at Vs = 500 GeV, based on full ILD simulation

<u>Currently obtainable statistical precisions</u> assume H20 scenario, 1600 fb⁻¹ Mass:

From left polarization results of neutralino analysis (similar for chargino channel)

ILC1, ILC2: better than 1% Mirage: 2–3%

expected to improve further by adding results of chargino and right polarization

Cross section: **better than few %**

Plans

Finalize results and prepare publication

✤ Talk at EPS-HEP 2017 in July 5-12, Venice (abstract submitted)

Consider contribution from Higgsino analysis to staging

- Results at 500 GeV provide basis for extrapolation to 250, 350 GeV
- ➢ Direct full ILD simulation studies at 250, 350 GeV
 250 GeV: ILC1(△M~20 GeV)
 350 GeV: ILC2(△M~10GeV), Mirage (△M~5GeV)

ILC2 : C1C1 left pol, mu tag, v01-16-02

Compare R= 0.7, 0.8, 0.9, 1.0, 1.1

All analysis cuts applied

Mirage : C1C1 left pol, mu tag, v01-16-02 All analysis cuts applied

Compare R= 0.7, 0.8, 0.9, 1.0, 1.1

Benchmarks in this Study

- χî χî Ζ Z
- Vs = 500 GeV, full ILD detector simulation

RNS model (Radiatively-driven natural SUSY)

- 4 light Higgsinos: $\widetilde{\chi}_1^0 \quad \widetilde{\chi}_2^0 \quad \widetilde{\chi}_1^+ \quad \widetilde{\chi}_1^-$ (LSP)
- **ΔM complies with naturalness** (no need for ISR tag)

Benchmarks with smaller ΔM are drawing attention , as ILC1 is (almost) excluded by LHC

- ILC1 (and some ILC2) results shown at LCWS2016 https://arxiv.org/pdf/1702.05333.pdf and
- Recently, Progress made in ILC2 and Mirage Mediation (nGMM1) (∆M as small as 4.5 GeV)

More detailed status on another page

NUHM2 model parameters

[arXiv:1404.7510]

Benchmark	ILC1	ILC2
M ₀ [GeV]	7025	5000
M _{1/2} [GeV]	568.3	1200
A ₀ [GeV]	-10427	-8000
tanβ	10	15
μ [GeV]	115	150
M _A [GeV]	1000	1000
M(χ ₁ ⁰) [GeV]	102.7	148.1
$M(\chi_1^{\pm})$ [GeV]	117.3	158.3
ΔM(N ₂ ,N ₁)	21.3	9.7
M(χ ₂ ⁰) [GeV]	124.0	157.8
Δ M (C ₁ ,N ₁)	14.6	10.2

Defined at GUT scale, Defined at weak scale Observables

Cuts for ILC2 N1N2

- lepton type ($\mu\mu$ or ee) : the two leptonic channels of N1N2 analysis
- **nTrack = 2** : number of charged tracks
- no hit in BeamCal : veto yy2f BG
- Pt_lep1,2 > 2 GeV and |cosθlep1,2| < 0.95:
- **Coplanarity < 1.0 rad :** angle between leptons in x-y plane
- Evis Eγmax < 40 GeV : visible energy (very small for signal)
- Emis > 300 GeV : missing energy (very large for signal)
- |cosθmissing| < 0.98 : θ of missing energy events
- $|\cos\theta Z| < 0.98$: Z^* production angle
- **Pt_dl < 80 GeV** : transverse momentum of dilepton
- Minv<20 GeV : dilepton invariant mass: determines ΔM

last of all observe distributions of Minv and dilepton energy (E_dl) Kinematic edge is a function of Higgsino mass and ΔM