Top electroweak couplings study with the Matrix Element Method using di-muonic state at $\sqrt{s} = 500$ GeV, ILC

51th General Meeting

Yo Sato^A

Akimasa Ishikawa^A, Emi Kou^B, Francois Le Diberder^B, Hitoshi Yamamoto^A,

Junping Tian^C, Keisuke Fujii^D,

Tohoku University^A, LAL^B, University of Tokyo^C, KEK^D

Outline

- Introduction
- Status
 - Seed issues
 - Analysis with Matrix element method
- Summery and Plan

Top EW couplings at the ILC

- Top quark is the heaviest particle in the SM. Its large mass implies that this is strongly coupled to the mechanism of electroweak symmetry breaking (EWSB)
 - \rightarrow Top EW couplings are good proves for New physics behind EWSB

D The ILC is advanced in the $t\bar{t}Z^0$ and $t\bar{t}\gamma$ couplings study

• Top pair production process, $e^+e^- \rightarrow t\bar{t}$, goes directly through the $t\bar{t}Z^0$ and $t\bar{t}\gamma$

The general Lagrangian $\mathcal{L}_{\text{int}} = \sum_{v=\gamma,Z} g^{v} \left[V_{l}^{v} \bar{t} \gamma^{l} (F_{1V}^{v} + F_{1A}^{v} \gamma_{5})t + \frac{i}{2m_{t}} \partial_{\nu} V_{l} \bar{t} \sigma^{l\nu} (F_{2V}^{v} + F_{2A}^{v} \gamma_{5})t \right]$ $F_{2A}^{v} \text{ can be a complex number } \rightarrow 10 \text{ real form factors}$ eg)

- Composite models yields typically 10% deviation of $g_{L,R}{}^{Z}(=F_{1V}^{Z} \pm F_{1A}^{Z})$
- In the 2HDM, F_{2A}^{γ} which is a CP-violating parameter can be non-zero

Alternative : Di-leptonic state

Idea: Top quark decays before hadronization because of its large width

\rightarrow Angles of the final state have the information of $t\bar{t}Z^0/\gamma$ vertex

 \rightarrow Use the di-leptonic state to obtain more angles

At most, there are 9 angles related to ttZ/ γ vertex (cos θ_t , cos θ_{W^+} , ϕ_{W^+} , cos θ_{l^+} , ϕ_{l^+} , cos θ_{W^-} , ϕ_{W^-} , cos θ_{l^-} , ϕ_{l^-})

Situation

- \square The hadronization of *b*, \overline{b}
- ☑ ISR, beamsstrahlung, beam energy spread
- \square $\gamma\gamma \rightarrow$ hadrons

Kinematical reconstruction

1. Define the χ^2_μ ;

$$\chi^2_{\mu} = \chi^2_{\mu^+} + \chi^2_{\mu^-}, \ \chi^2_{\mu^{\pm}} = \left(\frac{E^{**}_{\mu^{\pm}}(\theta_t, \phi_t) - m_{W^{\pm}}/2}{\sigma[E^{**}_{\mu^{\pm}}]}\right)^2$$

The energy of μ^{\pm} in the W^{\pm} rest frame, $E_{\mu^{\pm}}^{**}$, must be equal to $m_{W^{\pm}}/2$ and it can be written by two parameters (θ_t , ϕ_t).

2. Define the χ_b^2 ;

$$\chi_b^2 = \left(\frac{E_b^{meas.} - E_b^{rec.}(\theta_t, \phi_{t, \cdot})}{\sigma[E_b^{meas.}]}\right)^2 + \left(\frac{E_{\overline{b}}^{meas.} - E_{\overline{b}}^{rec.}(\theta_t, \phi_t)}{\sigma[E_{\overline{b}}^{meas.}]}\right)^2$$

Although the energy of b quarks can be only poorly measured, we can eliminate bcharge ambiguity by comparing the measured energy to the reconstructed energy.

3. Compound χ^2_{tot} ; $\chi^2_{tot} = \chi^2_{\mu} + \chi^2_{b}$

One minimizes the χ^2_{tot} to obtain optimal solution of (θ_t, ϕ_t) .

Seed issues

Until last GM : Truth values were used for initial seeds of the parameters.

 \rightarrow Repeat to put complete random values on seeds ~20 times.

Sample A.

- Distributions can be reconstructed but miss pairing of bW slightly increase.
- When masses are varied with BW constraints, results are almost same

Sample B.

It doesn't work for now ...

We have used k_{e^-} , k_{e^+} to reconstruct the ISR/BS effects. (as next slide)

- Unknown parameters : \vec{P}_{ν} , $\vec{P}_{\overline{\nu}}$, $(E_b, E_{\overline{b}})$, k_{e^-} , $k_{e^+} = > 8$ (10)
- Constraints : E_{CM} , $\vec{P}_{init.}$, m_t , $m_{\bar{t}}$, m_{W^+} , m_{W^-} , $(E_b, E_{\bar{b}}) => 8$ (10)
- \rightarrow Although solutions are obtained, the optimal one cannot be selected.
- \rightarrow Have not well discussed about this problem yet.

(It seems that an Ukrainian student is working on it with Francois.)

Considering ISR/BS effects

Collinear approximation:

Photons are emitted on the beam directions by ISR/BS

$$\vec{e}^{-} = \hat{\eta}_{e^{-}} E_{e^{-}} \tag{1}$$

$$\vec{e}^{+} = \hat{\eta}_{e^{+}} E_{e^{+}} \tag{2}$$

with,

$$\hat{\eta}_{e^-} = (\sin\theta_c, 0, \quad \cos\theta_c) \tag{3}$$

$$\hat{\eta}_{e^+} = (\sin\theta_c, 0, -\cos\theta_c) \tag{4}$$

$$E_{e^{\pm}} = E = 250 \text{ GeV} \tag{5}$$

where θ_c is the beam crossing angle, $\theta_c = 7$ mrad.

In this approximation, the directions are not changed but only the energies are changed. Then the electron and positron thre-momenta become:

$$(\vec{e}^{-})^{*} = \hat{\eta}_{e^{-}} E_{e^{-}}^{*} = \hat{\eta}_{e^{-}} E(1 - k_{e^{-}}) \quad \text{with} \quad k_{e^{-}} = \frac{E - E_{e^{-}}^{*}}{E}$$

$$(\vec{e}^{+})^{*} = \hat{\eta}_{e^{+}} E_{e^{+}}^{*} = \hat{\eta}_{e^{+}} E(1 - k_{e^{+}}) \quad \text{with} \quad k_{e^{+}} = \frac{E - E_{e^{+}}^{*}}{E}$$

$$(6)$$

$$(7)$$

where $E_{e^{\pm}}^{*}$ is the energy of electron or positron just before collision.

Investigate the effects of reducing angles

At most we can reconstruct 9 angles with di-leptonic channel;

 $(\cos \theta_{l}, \cos \theta_{W^{+}}, \phi_{W^{+}}, \cos \theta_{l^{+}}, \phi_{l^{+}}, \cos \theta_{W^{-}}, \phi_{W^{-}}, \cos \theta_{l^{-}}, \phi_{l^{-}})$

We investigate the effects of reducing number of angles

(1) 9 (full)

(2) 7 $(\cos\theta_t, \cos\theta_{W^+}, \phi_{W^+}, \cos\theta_{l^+}, \phi_{l^+}, \cos\theta_{W^-}, \phi_{W^-})$ or $(\cos\theta_t, \cos\theta_{W^+}, \phi_{W^+}, \cos\theta_{W^-}, \phi_{W^-}, \cos\theta_{l^-}, \phi_{l^-})$

(3) 5 (cos θ_t , cos θ_{W^+} , ϕ_{W^+} , cos θ_{W^-} , ϕ_{W^-})

(4) 1 (cos θ_t)

 \rightarrow (2)~(4) can be reconstructed with the semi-leptonic state in principle.

Status

Estimate the precision at Truth level for each case.

 \rightarrow At first, we fit 4 form factors simultaneously. ($\mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma}, \mathcal{R}e \ \delta \tilde{F}_{1A}^{Z}, \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma}, \mathcal{R}e \ \delta \tilde{F}_{1A}^{Z}$)

Sample (made by my brief generator) Di-muonic state of top pair production 500 GeV, 500 fb⁻¹, $(P_{e^-}, P_{e^+}) = (\pm 0.8, \pm 0.3)$ $(\mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma}, \mathcal{R}e \ \delta \tilde{F}_{1V}^{Z}, \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma}, \mathcal{R}e \ \delta \tilde{F}_{1A}^{Z}) = (0, -0.1, 0, +0.1)$

- ♦ (1) provides the best precision.
- ♦ (4) cannot reconstruct precisely
 - \rightarrow Need to check if there are bugs

 \rightarrow Investigate sensitivity for other parameters

(1)	$\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} \\ \mathcal{R}e \ \delta \tilde{F}_{1V}^{Z} \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} \end{bmatrix}$	$\begin{array}{c} -0.0025 \pm 0.0059 \\ -0.0984 \pm 0.0103 \\ -0.0064 \pm 0.0108 \\ +0.0805 \pm 0.0170 \end{array}$
(2)	Ongoing	
(3)	$\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} \\ \mathcal{R}e \ \delta \tilde{F}_{1V}^{Z} \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} \end{bmatrix}$	$\begin{array}{c} -0.0011 \pm 0.0060 \\ -0.0985 \pm 0.0110 \\ +0.0077 \pm 0.0134 \\ +0.0905 \pm 0.0196 \end{array}$
(4)	$\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} \\ \mathcal{R}e \ \delta \tilde{F}_{1V}^{Z} \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} \end{bmatrix}$	$\begin{array}{c} +0.0026 \pm 0.0060 \\ -0.2143 \pm 0.0157 \\ -0.1120 \pm 0.0113 \\ +0.0842 \pm 0.0198 \end{array}$
or	$\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} \\ \mathcal{R}e \ \delta \tilde{F}_{1V}^{Z} \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} \end{bmatrix}$	$\begin{array}{c} +0.0047 \pm 0.0061 \\ -0.1845 \pm 0.0152 \\ 0 \\ +0.0717 \pm 0.0196 \end{array}$

Summery

Seed issues

Random values are used for seeds instead of MC truth values.

• Sample A.

Similar distribution can be reconstructed.

• Sample B.

When k_{e^-} , k_{e^+} are included, reconstruction doesn't work well

Analysis

□ Investigate the effects of reducing number of angles.

- More angles are used, higher precision can be obtained.
- Sensitivity for other parameters should be checked.

Back up

Investigate the effects of reducing angles

Modify the $|M|^2$ for each cases as following

$$(1) \left| M_{\lambda_{e^{-}},\lambda_{e^{+}}} \right|^{2} = \sum_{\lambda_{b},\lambda_{\bar{b}}} \left| \sum_{\lambda_{t},\lambda_{\bar{t}}} \left[M_{e^{-e^{+} \to t\bar{t}}}^{\lambda_{t}\lambda_{\bar{t}}} \left(\sum_{\lambda_{W^{+}}} M_{t \to bW^{+}}^{\lambda_{W^{+}}} M_{W^{+} \to l^{+}\nu}^{\lambda_{W^{+}}} \right) \left(\sum_{\lambda_{W^{-}}} M_{\bar{t} \to \bar{b}W^{-}}^{\lambda_{\bar{t}}\lambda_{\bar{b}}\lambda_{W^{-}}} M_{W^{-} \to l^{-}\bar{\nu}}^{\lambda_{W^{-}}} \right) \right] \right|^{2} \\ (2) \left| M_{\lambda_{e^{-}},\lambda_{e^{+}}} \right|^{2} = \sum_{\lambda_{b},\lambda_{\bar{b}},\lambda_{W^{-}}} \left| \sum_{\lambda_{t},\lambda_{\bar{t}}} \left[M_{e^{-e^{+} \to t\bar{t}}}^{\lambda_{t}\lambda_{\bar{t}}} \left(\sum_{\lambda_{W^{+}}} M_{t \to bW^{+}}^{\lambda_{t}\lambda_{b}\lambda_{W^{+}}} M_{W^{+} \to l^{+}\nu}^{\lambda_{W^{+}}} \right) M_{\bar{t} \to \bar{b}W^{-}}^{\lambda_{\bar{t}}\lambda_{\bar{b}}\lambda_{W^{-}}} \right] \right|^{2} (\text{vise versa}) \\ (3) \left| M_{\lambda_{e^{-}},\lambda_{e^{+}}} \right|^{2} = \sum_{\lambda_{b},\lambda_{\bar{b}},\lambda_{W^{+}},\lambda_{W^{-}}} \left| \sum_{\lambda_{t},\lambda_{\bar{t}}} \left[M_{e^{-e^{+} \to t\bar{t}}}^{\lambda_{t}\lambda_{\bar{t}}} M_{t \to bW^{+}}^{\lambda_{t}\lambda_{b}\lambda_{W^{+}}} M_{\bar{t} \to \bar{b}W^{-}}^{\lambda_{\bar{t}}\lambda_{\bar{b}}\lambda_{W^{-}}} \right] \right|^{2} \\ (4) \left| M_{\lambda_{e^{-},\lambda_{e^{+}}}} \right|^{2} = \sum_{\lambda_{t},\lambda_{\bar{t}}} \left| M_{e^{-e^{+} \to t\bar{t}}}^{\lambda_{t}\lambda_{\bar{t}}}} \right|^{2} \end{cases}$$

Alternative : The Matrix Element Method

The Matrix Element Method (MEM)

The most efficient method when all the kinematics can be reconstructed

MEM with the 9 angles and the cross-section

• All 10 form factors can be fitted simultaneously

 \rightarrow ~0.01 precision is obtained <u>at parton level study</u> with di-leptonic state

```
Statistical uncertainties and correlation with the SM LO as normalization
                                                                                                      Kheim, E.K. Kurihara, Le Diberder: arXiv: 1503:04247
             \mathcal{R}_{\rm e} \,\delta \tilde{F}_{1V}^{\gamma} \quad \mathcal{R}_{\rm e} \,\delta \tilde{F}_{1V}^{Z} \quad \mathcal{R}_{\rm e} \,\delta \tilde{F}_{1A}^{\gamma} \quad \mathcal{R}_{\rm e} \,\delta \tilde{F}_{1A}^{Z}
                                                                                 \mathcal{R}\mathrm{e} \ \delta \tilde{F}_{2V}^{\gamma}
                                                                                                   \mathcal{R}e \ \delta \tilde{F}^Z_{2V} \quad \mathcal{R}e \ \delta \tilde{F}^{\gamma}_{2A} \quad \mathcal{R}e \ \delta \tilde{F}^Z_{2A} \quad \mathcal{I}m \ \delta \tilde{F}^{\gamma}_{2A} \quad \mathcal{I}m \ \delta \tilde{F}^Z_{2A}
              0.0037
                                 -0.18
                                                  -0.09
                                                                   +0.14
                                                                                    +0.62
                                                                                                     -0.15
                                                                                                                                           0
                                0.0063
                                                  +.14
                                                                   -0.06
                                                                                    -0.13
                                                                                                     +0.61
                                                                                                                          0
                                                                                                                                           0
                                                 0.0053
                                                                   -0.15
                                                                                    -0.05
                                                                                                     +0.09
                                                                                                                          0
                                                                                                                                           0
                                                                  0.0083
                                                                                    +0.06
                                                                                                      -0.04
                                                                                                                                           0
                                                                                                                          0
                                                                                   0.0105
                                                                                                     -0.19
                                                                                                                          0
                                                                                                                                           0
                                                                                                                                                                               0
                                                                                                     0.0169
                                                                                                                          0
                                                                                                                                            0
                                                                                                                      0.0068
                                                                                                                                        -0.15
                                                                                                                                                                               0
                                                                                                                                                             0
                                                                                                                                                                               0
                                                                                                                                       0.0118
                                                                                                                                                         0.0069
                                                                                                                                                                           -0.17
                                                                                                                                                                           0.0100
                                                             500 GeV&500 fb<sup>-1</sup> Polarization 50/50 between \pm 80\% and \pm 30\%
```

→ Estimate the ultimate precision considering all effects

Kinematical Reconstruction : Strategy

Di-muonic state :
$$e^+e^-
ightarrow t\overline{t}
ightarrow b\overline{b}\mu^+
u\mu^-\overline{
u}$$

=> 6 (8) unknowns

Strategy

(1) **Recover them from 8 kinematical constraints** $\begin{bmatrix} \text{initial state} : (\sqrt{s}, \vec{P}_{\text{init.}}) = (500, \vec{0}) \\ \text{mass} : m_t, m_{\bar{t}}, m_{W^+}, m_{W^-} \end{bmatrix}$

 \rightarrow But the equation is non-linear and the b-charge ambiguity remains.

 \rightarrow Typically <u>4 solutions</u> per an event

(2) Select the optimal one by comparing E_b , $E_{\overline{b}}$ between recovered and measured

Results : Polar angle distribution of top, $\cos \theta_t$

(Before cut)

(After cut)

- In the case of Left, migrations of events passing from forward to backward are observed.
 - $\leftarrow The miss pairing of W and b$
- After selection of reliable events by the quality of the kinematical reconstruction, migrations become smaller.

Ratio of the miss pairing	Left	Right
Before cut (efficiency = ~92 %)	8.9 %	6.0 %
After cut (efficiency = ~50 %)	5.5 %	3.0 %

Results : All 10 form factors fit with MEM

Fit of all 10 form factors at same time

Precision is typically ~0.03

eg) \tilde{F}_1	γ .V
-------------------	---------

	Precision of $\widetilde{F}_{1V}^{\gamma}$	N/N _{di-muonic}
This result	0.011	1
Parton level	0.004	~4
Semi-leptonic study	0.002	~25

- \rightarrow Comparable with the previous study
- Biases are thought to results from the detector effects and the miss pairing of Wb
- \rightarrow One can reduce them by convoluting $|M|^2$ with

the detector effects and applying relevant cuts.

Preliminary

(efficiency = ~ 50 %) $\mathcal{R}e \; \delta \tilde{F}_{1V}^{\gamma} - 0.0015 \pm 0.0108$ $\mathcal{R}e \ \delta \tilde{F}_{1V}^Z - 0.0271 \pm 0.0187$ $\mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} - 0.0314 \pm 0.0156$ $\mathcal{R}e \ \delta \tilde{F}_{1A}^{\widetilde{Z}} + 0.0277 \pm 0.0246$ $\mathcal{R}e \ \delta \tilde{F}_{2V}^{\gamma} - 0.0266 \pm 0.0317$ $\mathcal{R}e \ \delta \tilde{F}_{2V}^Z - 0.0702 \pm 0.0504$ $\mathcal{R}e \ \delta \tilde{F}_{2A}^{\gamma} \quad -0.0082 \pm 0.0211$ $\mathcal{R}e \ \delta \tilde{F}_{2A}^{Z} - 0.0164 \pm 0.0360$ $\mathcal{I}m \ \delta \tilde{F}_{2A}^{\gamma} - 0.0427 \pm 0.0206$ $\begin{bmatrix} \mathcal{I}m \ \delta \tilde{F}^{Z}_{2A} & +0.0220 \pm 0.0297 \end{bmatrix}$ $F_{1V}^{\tilde{v}} = -(F_{1V}^v + F_{2V}^v), \quad F_{2V}^{\tilde{v}} = F_{2V}^v,$ $\tilde{F_{1A}^v} = -F_{1A}^v, \quad \tilde{F_{2A}^v} = -iF_{2A}^v$

Thrust axis method

We use the thrust axis method for the measurement of 2 b-jets.

- Collect all hadronized particles and photons from isolated leptons in the ILC frame
- Boost them to their rest frame and calculate thrust axis in this frame (defined as the BB frame in this slide)
- Boost the vectors along thrust axis to the ILC' frame
 (ILC' frame : the frame in which head-on-collision occurs)

Results : Distributions of the 9-angles

 $\cos \theta_t$, $\cos \theta_{W^+}$, ϕ_{W^+} , $\cos \theta_{\mu^+}$, ϕ_{μ^+} , $\cos \theta_{W^-}$, ϕ_{W^-} , $\cos \theta_{\mu^-}$, ϕ_{μ^-}

Different between Left and Right polarization

 \rightarrow These have the information of the polarization of top

Results : Variance matrix of 10 form factors fit

Preliminary (efficiency = ~50 %)

$\mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma}$	${\cal R}e \delta ilde F^Z_{1V}$	${\cal R}e \delta { ilde F}^{\gamma}_{1A}$	${\cal R}e \delta ilde F^Z_{1A}$	${\cal R}e \delta { ilde F}^{\gamma}_{2V}$	${\cal R}e \delta ilde{F}^Z_{2V}$	${\cal R}e \delta ilde{F}^{\gamma}_{2A}$	${\cal R}e \ \delta { ilde F}^Z_{2A}$	$\mathcal{I}m \ \delta \tilde{F}_{2A}^{\gamma}$	$\mathcal{I}m \ \delta \tilde{F}_{2A}^Z$
0.0108	-0.14	-0.03	+0.09	+0.62	-0.10	+0.02	-0.06	+0.04	-0.02
	0.0187	+0.09	-0.02	-0.10	+0.61	-0.06	+0.02	-0.01	+0.03
		0.0156	-0.11	-0.01	+0.03	+0.02	0	+0.05	+0.01
			0.0246	-0.01	0	+0.01	+0.03	+0.01	+0.05
				0.0317	-0.17	+0.03	-0.12	0	-0.03
					0.0504	-0.11	-0.06	-0.02	0
						0.0211	-0.17	-0.04	+0.01
							0.0360	-0.01	-0.45
								0.0206	-0.13
-									0.0297

Results : No cut & Loose cut & Tight cut

No cut (efficiency = ~ 92 %)

Left 8.9% Right 6.0%

Loose cut (efficiency = ~ 80 %) Tight cut (efficiency = ~ 50 %)

Left 8.1% Right 5.5%

 $\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} & -0.0047 \pm 0.0088 \end{bmatrix}$ $\mathcal{R}e \ \delta \tilde{F}_{1V}^{\vec{Z}} - 0.0236 \pm 0.0154$ $\mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} \quad -0.0460 \pm 0.0126$ $\mathcal{R}e \ \delta \tilde{F}_{1A}^{Z} + 0.0631 \pm 0.0198$ $\mathcal{R}e \ \delta \tilde{F}_{2V}^{\gamma} - 0.0669 \pm 0.0253$ $\mathcal{R}e \ \delta \tilde{F}_{2V}^{\vec{Z}} - 0.0206 \pm 0.0417$ $\mathcal{R}e \ \delta \tilde{F}_{2A}^{\gamma} + 0.0011 \pm 0.0160$ $\mathcal{R}e \ \delta \tilde{F}_{2A}^{\overline{Z}} = -0.0370 \pm 0.0283$ $\mathcal{I}m \, \delta \tilde{F}_{2A}^{\gamma} = -0.0143 \pm 0.0163$ 1 $\mathcal{I}m \ \delta \tilde{F}_{2A}^{\hat{Z}}$ -0.0110 ± 0.0237

Left 5.5% Right 3.0%

$$\begin{array}{ll} Re \ \delta \tilde{F}_{1V}^{\gamma} & -0.0015 \pm 0.0108 \\ Re \ \delta \tilde{F}_{1V}^{Z} & -0.0271 \pm 0.0187 \\ Re \ \delta \tilde{F}_{1A}^{\gamma} & -0.0314 \pm 0.0156 \\ Re \ \delta \tilde{F}_{1A}^{\gamma} & +0.0277 \pm 0.0246 \\ Re \ \delta \tilde{F}_{2V}^{\gamma} & -0.0266 \pm 0.0317 \\ Re \ \delta \tilde{F}_{2V}^{\gamma} & -0.0702 \pm 0.0504 \\ Re \ \delta \tilde{F}_{2A}^{\gamma} & -0.0082 \pm 0.0211 \\ Re \ \delta \tilde{F}_{2A}^{\gamma} & -0.0164 \pm 0.0360 \\ Tm \ \delta \tilde{F}_{2A}^{\gamma} & -0.0427 \pm 0.0206 \\ Tm \ \delta \tilde{F}_{2A}^{\gamma} & +0.0220 \pm 0.0297 \\ \end{array} \right]$$

True and Miss pairing of Wb

\rightarrow The migration effect happens in only the case of eLpR

The $t\bar{t}Z^0/\gamma$ couplings : CP-conserving

$$\mathcal{L}_{\text{int}} = \sum_{v=\gamma,Z} g^{v} \left[V_{l}^{v} \bar{t} \gamma^{l} (F_{1V}^{v} + F_{1A}^{v} \gamma_{5}) t + \frac{i}{2m_{t}} \partial_{\nu} V_{l} \bar{t} \sigma^{l\nu} (F_{2V}^{v} + F_{2A}^{v} \gamma_{5}) t \right]$$
$$g_{L}^{Z} = F_{1V}^{Z} - F_{1A}^{Z}, \qquad g_{R}^{Z} = F_{1V}^{Z} + F_{1A}^{Z}$$

Deviation from the SM of g_L^Z , g_R^Z will be typically 10% in composite models

arXiv:1505.06020 [hep-ph]

The $t\bar{t}Z^0/\gamma$ couplings : CP-violating

$$\mathcal{L}_{\text{int}} = \sum_{\nu=\gamma,Z} g^{\nu} \left[V_l^{\nu} \bar{t} \gamma^l (F_{1V}^{\nu} + F_{1A}^{\nu} \gamma_5) t + \frac{i}{2m_t} \partial_{\nu} V_l \bar{t} \sigma^{l\nu} (F_{2V}^{\nu} + F_{2A}^{\nu} \gamma_5) t \right]$$

- \square F_{2A}^{γ} is the electric dipole moment which is forbidden in the SM
- \rightarrow Probes for CP-violating beyond the Kobayashi-Maskawa mechanism

Kinematical Reconstruction : True pairing

- Intersections of green and red lines are solutions in terms of (θ_t, ϕ_t)
- <u>Blue</u> line shows the comparison of the E_b , $E_{\bar{b}}$ between rec. and meas.

\rightarrow The optimal solution is selected obtained

Kinematical Reconstruction : Miss pairing

• <u>Blue</u> line is far from intersections of <u>green</u> and <u>red</u> line

\rightarrow Miss pairing is excluded by the E_b , $E_{\overline{b}}$ comparision.

