Top electroweak couplings study with the Matrix Element Method

using di-muonic state at $\sqrt{s}=500 \mathrm{GeV}$, ILC

51th General Meeting

Yo Sato ${ }^{A}$
Akimasa Ishikawa ${ }^{\text {A }}$, Emi Kou ${ }^{\text {B }}$, Francois Le Diberder ${ }^{\text {B }}$, Hitoshi Yamamoto ${ }^{\text {A }}$, Junping Tianㄷ, Keisuke FujiiD,

Tohoku University ${ }^{\text {A }}$, LAL ${ }^{\text {B }}$, University of Tokyo ${ }^{\text {C }}$, KEK ${ }^{\text {D }}$

Outline

- Introduction
- Status
- Seed issues
- Analysis with Matrix element method
- Summery and Plan

Top EW couplings at the ILC

\square Top quark is the heaviest particle in the SM. Its large mass implies that this is strongly coupled to the mechanism of electroweak symmetry breaking (EWSB)
\rightarrow Top EW couplings are good proves for New physics behind EWSB
\square The ILC is advanced in the $t \bar{t} Z^{0}$ and $t \bar{t} \gamma$ couplings study

- Top pair production process, $e^{+} e^{-} \rightarrow t \bar{t}$, goes directly through the $t \bar{t} Z^{0}$ and $t \bar{t} \gamma$

The general Lagrangian

$\left.\mathcal{L}_{\text {int }}=\sum_{v=\gamma, Z} g^{v}\left[V_{l}^{v} \bar{t} \tau^{l}\left(F_{1 V}^{v}\right)+\left(F_{14}^{v}\right) /(5) t+\frac{i}{2 m_{t}} \partial_{\nu} V_{l} \bar{t} \sigma^{l \nu}\left(\widetilde{F_{2 V}^{v}}\right)+\left(F_{2 A}^{v}\right)_{(5)}\right) t\right]$
$F_{2 A}^{v}$ can be a complex number $\rightarrow \mathbf{1 0}$ real form factors eg)

- Composite models yields typically 10% deviation of $g_{L, R}^{Z}\left(=F_{1 V}^{Z} \pm F_{1 A}^{Z}\right)$
- In the $2 \mathrm{HDM}, F_{2 A}^{\gamma}$ which is a CP-violating parameter can be non-zero

Alternative : Di-leptonic state

Idea : Top quark decays before hadronization because of its large width
\rightarrow Angles of the final state have the information of $t \bar{t} Z^{0} / \gamma$ vertex
\rightarrow Use the di-leptonic state to obtain more angles

At most, there are 9 angles related to $\mathrm{tt} Z / \gamma$ vertex $\left(\cos \theta_{t}, \cos \theta_{W^{+}}, \phi_{W^{+}}, \cos \theta_{l^{+}}, \phi_{l^{+}}, \cos \theta_{W^{-}}, \phi_{W^{-}}, \cos \theta_{l^{-}}, \phi_{l^{-}}\right)$

Situation

च The hadronization of b, \bar{b}
च ISR, beamsstrahlung, beam energy spread
$\nabla \mathrm{YY} \rightarrow$ hadrons

Kinematical reconstruction

1. Define the χ_{μ}^{2};

$$
\chi_{\mu}^{2}=\chi_{\mu^{+}}^{2}+\chi_{\mu^{-}}^{2}, \quad \chi_{\mu^{ \pm}}^{2}=\left(\frac{E_{\mu^{ \pm}}^{*}\left(\theta_{t}, \phi_{t}\right)-m_{W^{ \pm}} / 2}{\sigma\left[E_{\mu^{ \pm}}^{* *}\right]}\right)^{2}
$$

The energy of $\mu^{ \pm}$in the $W^{ \pm}$rest frame, $E_{\mu^{ \pm}}^{* *}$, must be equal to $m_{W^{ \pm}} / 2$ and it can be written by two parameters $\left(\theta_{t}, \phi_{t}\right)$.
2. Define the χ_{b}^{2};

$$
\chi_{b}^{2}=\left(\frac{E_{b}^{\text {meas. }}-E_{b}^{\text {rec. }}\left(\theta_{t}, \phi_{t}\right)}{\sigma\left[E_{b}^{\text {meas. }}\right]}\right)^{2}+\left(\frac{E_{\bar{b}}^{\text {meas. }}-E_{\bar{b}}^{\text {rec. }}\left(\theta_{t}, \phi_{t}\right)}{\sigma\left[E_{b}^{\text {meas. }}\right]}\right)^{2}
$$

Although the energy of b quarks can be only poorly measured, we can eliminate bcharge ambiguity by comparing the measured energy to the reconstructed energy.
3. Compound $\chi_{t o t}^{2}$; $\chi_{t o t}^{2}=\chi_{\mu}^{2}+\chi_{b}^{2}$

One minimizes the $\chi_{t o t}^{2}$ to obtain optimal solution of $\left(\theta_{t}, \phi_{t}\right)$.

Seed issues

Until last GM : Truth values were used for initial seeds of the parameters.
\rightarrow Repeat to put complete random values on seeds ~ 20 times.

Sample A.

- Distributions can be reconstructed but miss pairing of bW slightly increase.
- When masses are varied with BW constraints, results are almost same

Ratio of the miss pairing of bW

Seed issues

Sample B.

It doesn't work for now ...
We have used $k_{e^{-}}, k_{e^{+}}$to reconstruct the ISR/BS effects. (as next slide)

- Unknown parameters: $\vec{P}_{v}, \vec{P}_{\bar{v}},\left(E_{b}, E_{\bar{b}}\right), k_{e^{-}}, k_{e^{+}}=>8$ (10)
-Constraints : $E_{C M}, \vec{P}_{\text {init }}, m_{t}, m_{\bar{t}}, m_{W^{+}}, m_{W^{-}},\left(E_{b}, E_{\bar{b}}\right)=>8$ (10)
\rightarrow Although solutions are obtained, the optimal one cannot be selected.
\rightarrow Have not well discussed about this problem yet.
(It seems that an Ukrainian student is working on it with Francois.)

Considering ISR/BS effects

Collinear approximation:
Photons are emitted on the beam directions by ISR/BS

$$
\begin{align*}
\vec{e}^{-} & =\hat{\eta}_{e^{-}} E_{e^{-}} \tag{1}\\
\vec{e}^{+} & =\hat{\eta}_{e^{+}} E_{e^{+}} \tag{2}
\end{align*}
$$

with,

$$
\begin{align*}
\hat{\eta}_{e^{-}} & =\left(\sin \theta_{c}, 0, \quad \cos \theta_{c}\right) \tag{3}\\
\hat{\eta}_{e^{+}} & =\left(\sin \theta_{c}, 0,-\cos \theta_{c}\right) \tag{4}\\
E_{e^{ \pm}} & =E=250 \mathrm{GeV} \tag{5}
\end{align*}
$$

where θ_{c} is the beam crossing angle, $\theta_{c}=7 \mathrm{mrad}$.
In this approximation, the directions are not changed but only the energies are changed. Then the electron and positron thre-momenta become:

$$
\begin{array}{rll}
\left(\vec{e}^{-}\right)^{*} & =\hat{\eta}_{e^{-}} E_{e^{-}}^{*}=\hat{\eta}_{e^{-}} E\left(1-k_{e^{-}}\right) & \text {with } \\
k_{e^{-}}=\frac{E-E_{e^{-}}^{*}}{E} \tag{7}\\
\left(\vec{e}^{+}\right)^{*}=\hat{\eta}_{e^{+}} E_{e^{+}}^{*}=\hat{\eta}_{e^{+}} E\left(1-k_{e^{+}}\right) & \text {with } & k_{e^{+}}=\frac{E-E_{e^{+}}^{*}}{E}
\end{array}
$$

where $E_{e^{ \pm}}^{*}$ is the energy of electron or positron just before collision.

Investigate the effects of reducing angles

At most we can reconstruct 9 angles with di-leptonic channel;

$$
\left(\cos \theta_{t}, \cos \theta_{W^{+}}, \phi_{W^{+}}, \cos \theta_{l^{+}}, \phi_{l^{+}}, \cos \theta_{W^{-}}, \phi_{W^{-}}, \cos \theta_{l^{-}}, \phi_{l^{-}}\right)
$$

We investigate the effects of reducing number of angles
(1) 9 (full)
(2) $7\left(\cos \theta_{t}, \cos \theta_{W^{+}}, \phi_{W^{+}}, \cos \theta_{l^{+}}, \phi_{l^{+}}, \cos \theta_{W^{-}}, \phi_{W^{-}}\right)$or $\left(\cos \theta_{t}, \cos \theta_{W^{+}}, \phi_{W^{+}}, \cos \theta_{W^{-}}, \phi_{W^{-}}, \cos \theta_{l^{-}}, \phi_{l^{-}}\right)$
(3) $5\left(\cos \theta_{t}, \cos \theta_{W^{+}}, \phi_{W^{+}}, \cos \theta_{W^{-}}, \phi_{W^{-}}\right)$
(4) $1\left(\cos \theta_{t}\right)$
\rightarrow (2) (4) can be reconstructed with the semi-leptonic state in principle.

Status

Estimate the precision at Truth level for each case.
\rightarrow At first, we fit 4 form factors simultaneously. ($\left.\mathcal{R} e \delta \tilde{F}_{1 V}^{\gamma}, \mathcal{R e} \delta \tilde{F}_{1 V}^{Z}, \mathcal{R e} \delta \tilde{F}_{1 A}^{\gamma}, \mathcal{R} e \delta \tilde{F}_{1 A}^{Z}\right)$
Sample (made by my brief generator)
Di-muonic state of top pair production
$500 \mathrm{GeV}, 500 \mathrm{fb}^{-1},\left(P_{e^{-}}, P_{e^{+}}\right)=(\pm 0.8, \mp 0.3)$
$\left(\mathcal{R e} \delta \tilde{F}_{1 V}^{\gamma}, \mathcal{R e} \delta \tilde{F}_{1 V}^{Z}, \mathcal{R e} \delta \tilde{F}_{1 A}^{\gamma}, \mathcal{R e} \delta \tilde{F}_{1 A}^{Z}\right)=(0,-0.1,0,+0.1)$

- (1) provides the best precision.
- (4) cannot reconstruct precisely
\rightarrow Need to check if there are bugs
\rightarrow Investigate sensitivity for other parameters
(1) $\left[\begin{array}{lll}\mathcal{R} e & \delta \tilde{F}_{1 V}^{\gamma} & -0.0025 \pm 0.0059 \\ \mathcal{R} e & \delta \tilde{F}_{1 V}^{Z} & -0.0984 \pm 0.0103 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{\gamma} & -0.0064 \pm 0.0108 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{Z} & +0.0805 \pm 0.0170\end{array}\right]$
(2) Ongoing
(3) $\left[\begin{array}{lll}\mathcal{R} e & \delta \tilde{F}_{1 V}^{\gamma} & -0.0011 \pm 0.0060 \\ \mathcal{R} e & \delta \tilde{F}_{Z}^{Z} & -0.0985 \pm 0.0110 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{\gamma} & +0.0077 \pm 0.0134 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{Z} & +0.0905 \pm 0.0196\end{array}\right]$
(4) $\left[\begin{array}{lll}\mathcal{R} e & \delta \tilde{F}_{1 V}^{\gamma} & +0.0026 \pm 0.0060 \\ \mathcal{R} e & \delta \tilde{F}_{1 V}^{Z} & -0.2143 \pm 0.0157 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{\gamma} & -0.1120 \pm 0.0113 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{Z} & +0.0842 \pm 0.0198\end{array}\right]$
or $\left[\begin{array}{ccc}\mathcal{R} e & \delta \tilde{F}_{1 V}^{\gamma} & +0.0047 \pm 0.0061 \\ \mathcal{R} e & \delta \tilde{F}_{Z}^{Z} & -0.1845 \pm 0.0152 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{\gamma} & 0 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{Z} & +0.0717 \pm 0.0196\end{array}\right]$

Summery

Seed issues

- Random values are used for seeds instead of MC truth values.
- Sample A.

Similar distribution can be reconstructed.

- Sample B.

When $k_{e^{-}}, k_{e^{+}}$are included, reconstruction doesn't work well

Analysis

\square Investigate the effects of reducing number of angles.

- More angles are used, higher precision can be obtained.
- Sensitivity for other parameters should be checked.

Back up

Investigate the effects of reducing angles

Modify the $|M|^{2}$ for each cases as following

(4) $\left|M_{\lambda_{e}-, \lambda_{e}+}\right|^{2}=\sum_{\lambda_{t}, \lambda_{\bar{E}}}\left|M_{e-e^{+} \rightarrow t \bar{t}}^{\lambda_{-} \lambda^{2}}\right|^{2}$

Alternative : The Matrix Element Method

The Matrix Element Method (MEM)

The most efficient method when all the kinematics can be reconstructed

MEM with the 9 angles and the cross-section

- All 10 form factors can be fitted simultaneously
$\rightarrow \sim 0.01$ precision is obtained at parton level study with di-leptonic state
Statistical uncertainties and correlation with the SM LO as normalization

\rightarrow Estimate the ultimate precision considering all effects

Kinematical Reconstruction : Strategy

Di-muonic state : $e^{+} e^{-} \rightarrow t \bar{t} \rightarrow \boldsymbol{b} \bar{b} \mu^{+} v \mu^{-} \bar{v}$ Measurable $\left[\begin{array}{l}\underline{\text { muon's }}: E_{\mu^{+}}, \theta_{\mu^{+}}, \phi_{\mu^{+}}, E_{\mu^{-}}, \theta_{\mu^{-}}, \phi_{\mu^{-}} \\ \underline{\text { b-jet's }}:\left(E_{b}\right), \theta_{b}, \phi_{b},\left(E_{\bar{b}}\right), \theta_{\bar{b}}, \phi_{\bar{b}}\end{array}\right.$
Missing

$$
\begin{aligned}
& {\left[\begin{array}{l}
\underline{\text { b-jet's }}:\left(E_{b}\right),\left(E_{\bar{b}}\right) \\
\underline{\text { neutrino's }}: E_{v}, \theta_{v}, \phi_{v}, E_{\bar{v}}, \theta_{\bar{v}}, \phi_{\bar{v}} \\
=>6 \text { (8) unknowns }
\end{array}\right.}
\end{aligned}
$$

Strategy

(1) Recover them from 8 kinematical constraints $\left[\begin{array}{l}\text { initial state }:\left(\sqrt{s}, \vec{P}_{\text {init. }}\right)=(500, \overrightarrow{0}) \\ \text { mass : } m_{t}, m_{\bar{t}}, m_{W^{+}}, m_{W^{-}}\end{array}\right.$
\rightarrow But the equation is non-linear and the b-charge ambiguity remains.
\rightarrow Typically 4 solutions per an event
(2) Select the optimal one by comparing $E_{b}, E_{\bar{b}}$ between recovered and measured

Results : Polar angle distribution of top, $\cos \theta_{t}$

(Before cut)

(After cut)

- In the case of Left, migrations of events passing from forward to backward are observed.
\leftarrow The miss pairing of W and b
- After selection of reliable events by the quality of the kinematical reconstruction, migrations become smaller.

Ratio of the miss pairing
 Left
 Right

Before cut (efficiency $=\sim 92 \%$)
8.9 \%
6.0 \%

After cut
(efficiency $=\sim 50 \%$)
5.5 \%
3.0 \%

Results : All 10 form factors fit with MEM

Fit of all $\mathbf{1 0}$ form factors at same time
\square Precision is typically ~ 0.03

	Precision of $\widetilde{F}_{1 V}^{\gamma}$	$N / N_{\text {di-muonic }}$
This result	$\mathbf{0 . 0 1 1}$	$\mathbf{1}$
Parton level	$\mathbf{0 . 0 0 4}$	$\mathbf{\sim 4}$
Semi-leptonic study	$\mathbf{0 . 0 0 2}$	$\sim \mathbf{2 5}$

\rightarrow Comparable with the previous study
\square Biases are thought to results from the detector effects and the miss pairing of Wb
\rightarrow One can reduce them by convoluting $|M|^{2}$ with

Preliminary

(efficiency = ~50 \%)

$$
\swarrow\left[\begin{array}{cc}
\mathcal{R} e \delta \tilde{F}_{1 V}^{\gamma} & -0.0015 \pm 0.0108 \\
\mathcal{R} e \delta \tilde{F}_{1 V}^{Z} & -0.0271 \pm 0.0187 \\
\mathcal{R} e \delta \tilde{F}_{1 A}^{\gamma} & -0.0314 \pm 0.0156 \\
\mathcal{R} e \delta \tilde{F}_{1 A}^{Z} & +0.0277 \pm 0.0246 \\
\mathcal{R} e \delta \tilde{F}_{2 V}^{\gamma} & -0.0266 \pm 0.0317 \\
\mathcal{R} e \delta \tilde{F}_{2 V}^{Z} & -0.0702 \pm 0.0504 \\
\mathcal{R} e \delta \tilde{F}_{2 A}^{\gamma} & -0.0082 \pm 0.0211 \\
\mathcal{R} e \delta \tilde{F}_{2 A}^{Z} & -0.0164 \pm 0.0360 \\
\mathcal{I} m \delta \delta \tilde{F}_{2 A}^{\gamma} & -0.0427 \pm 0.0206 \\
\mathcal{I} m & \delta \tilde{F}_{2 A}^{Z}
\end{array}+0.0220 \pm 0.0297\right]
$$

$$
\tilde{F_{1 V}^{\tilde{v}}}=-\left(F_{1 V}^{v}+F_{2 V}^{v}\right), \quad \tilde{F_{2 V}^{\tilde{v}}}=F_{2 V}^{v}
$$

$$
\tilde{F_{1 A}^{v}}=-F_{1 A}^{v}, \quad \tilde{F_{2 A}^{v}}=-i F_{2 A}^{v}
$$ the detector effects and applying relevant cuts.

Thrust axis method

We use the thrust axis method for the measurement of 2 b -jets.
(1) Collect all hadronized particles and photons from isolated leptons in the ILC frame
(2) Boost them to their rest frame and calculate thrust axis in this frame (defined as the $B B$ frame in this slide)
(3) Boost the vectors along thrust axis to the ILC' frame
(ILC' frame : the frame in which head-on-collision occurs)

Results : Distributions of the 9 -angles

$$
\cos \theta_{t}, \cos \theta_{W^{+}}, \phi_{W^{+}}, \cos \theta_{\mu^{+}}, \phi_{\mu^{+}}, \cos \theta_{W^{-}}, \phi_{W^{-}}, \cos \theta_{\mu^{-}}, \phi_{\mu^{-}}
$$

\square Different between Left and Right polarization
\rightarrow These have the information of the polarization of top

Results : Variance matrix of 10 form factors fit

Preliminary (efficiency $=\sim 50 \%$)

$$
\left[\begin{array}{cccccccccc}
\mathcal{R} e \delta \tilde{F}_{1 V}^{\gamma} & \mathcal{R} e \delta \tilde{F}_{1 V}^{Z} & \mathcal{R} e \delta \tilde{F}_{1 A}^{\gamma} & \mathcal{R} e \delta \tilde{F}_{1 A}^{Z} & \mathcal{R} e \delta \tilde{F}_{2 V}^{\gamma} & \mathcal{R} e \delta \tilde{F}_{2 V}^{Z} & \mathcal{R} e \delta \tilde{F}_{2 A}^{\gamma} & \mathcal{R} e \delta \tilde{F}_{2 A}^{Z} & \mathcal{I} m \delta \tilde{F}_{2 A}^{\gamma} & \mathcal{I} m \delta \tilde{F}_{2 A}^{Z} \\
0.0108 & -0.14 & -0.03 & +0.09 & +0.62 & -0.10 & +0.02 & -0.06 & +0.04 & -0.02 \\
& 0.0187 & +0.09 & -0.02 & -0.10 & +0.61 & -0.06 & +0.02 & -0.01 & +0.03 \\
& & 0.0156 & -0.11 & -0.01 & +0.03 & +0.02 & 0 & +0.05 & +0.01 \\
& & & 0.0246 & -0.01 & 0 & +0.01 & +0.03 & +0.01 & +0.05 \\
& & & & 0.0317 & -0.17 & +0.03 & -0.12 & 0 & -0.03 \\
& & & & & 0.0504 & -0.11 & -0.06 & -0.02 & 0 \\
& & & & & & 0.0211 & -0.17 & -0.04 & +0.01 \\
& & & & & & 0.0360 & -0.01 & -0.45 \\
& & & & & & & 0.0206 & -0.13 \\
& & & & & & 0.0297
\end{array}\right]
$$

Results : No cut \& Loose cut \& Tight cut

No cut (efficiency = ~92 \%)
Left 8.9\% Right 6.0\%

Loose cut (efficiency $=\sim 80 \%$) Tight cut (efficiency $=\sim 50 \%$)
Left 8.1\% Right 5.5\%
$\left[\begin{array}{lll}\mathcal{R} e & \delta \tilde{F}_{1 V}^{\gamma} & -0.0047 \pm 0.0088 \\ \mathcal{R} e & \delta \tilde{F}_{1 V}^{Z} & -0.0236 \pm 0.0154 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{\gamma} & -0.0460 \pm 0.0126 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{Z} & +0.0631 \pm 0.0198 \\ \mathcal{R} e & \delta \tilde{F}_{2 V}^{\gamma} & -0.0669 \pm 0.0253 \\ \mathcal{R} e & \delta \tilde{F}_{2 V}^{Z} & -0.0206 \pm 0.0417 \\ \mathcal{R} e & \delta \tilde{F}_{2 A}^{\gamma} & +0.0011 \pm 0.0160 \\ \mathcal{R} e & \delta \tilde{F}_{2 A}^{Z} & -0.0370 \pm 0.0283 \\ \mathcal{I} m & \delta \tilde{F}_{2 A}^{\gamma} & -0.0143 \pm 0.0163 \\ \mathcal{I} m & \delta \tilde{F}_{2 A}^{Z} & -0.0110 \pm 0.0237\end{array}\right]$
$\left[\begin{array}{lll}\mathcal{R} e & \delta \tilde{F}_{1 V}^{\gamma} & -0.0015 \pm 0.0108 \\ \mathcal{R} e & \delta \tilde{F}_{1 V}^{Z} & -0.0271 \pm 0.0187 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{\gamma} & -0.0314 \pm 0.0156 \\ \mathcal{R} e & \delta \tilde{F}_{1 A}^{Z} & +0.0277 \pm 0.0246 \\ \mathcal{R} e & \delta \tilde{F}_{2 V}^{\gamma} & -0.0266 \pm 0.0317 \\ \mathcal{R} e & \delta \tilde{F}_{2 V}^{Z} & -0.0702 \pm 0.0504 \\ \mathcal{R} e & \delta \tilde{F}_{2 A}^{\gamma} & -0.0082 \pm 0.0211 \\ \mathcal{R} e & \delta \tilde{F}_{2 A}^{Z} & -0.0164 \pm 0.0360 \\ \mathcal{I} m & \delta \tilde{F}_{2 A}^{\gamma} & -0.0427 \pm 0.0206 \\ \mathcal{I} m & \delta \tilde{F}_{2 A}^{Z} & +0.0220 \pm 0.0297\end{array}\right]$

True and Miss pairing of Wb

Right-handed electron case (eRpL), Blue line Little difference between true and miss associated distributions

Left-handed electron case (eLpR), Red line
Miss association changes angular
distribution significantly

\rightarrow The migration effect happens in only the case of eLpR

The $t \bar{t} Z^{0} / \gamma$ couplings: CP-conserving

$$
\begin{array}{r}
\left.\mathcal{L}_{\mathrm{int}}=\sum_{v=\gamma, Z} g^{v}\left[V_{l}^{v} \bar{t} \gamma^{l}\left(F_{1 V}^{v}+F_{1 A}^{v}\right) \gamma_{5}\right) t+\frac{i}{2 m_{t}} \partial_{\nu} V_{l} \bar{t} \sigma^{l \nu}\left(F_{2 V}^{v}+F_{2 A}^{v} \gamma_{5}\right) t\right] \\
g_{L}^{Z}=F_{1 V}^{Z}-F_{1 A}^{Z}, \quad g_{R}^{Z}=F_{1 V}^{Z}+F_{1 A}^{Z}
\end{array}
$$

\square Deviation from the SM of g_{L}^{Z}, g_{R}^{Z} will be typically 10% in composite models

arXiv:1505.06020 [hep-ph]

The $t \bar{t} Z^{0} / \gamma$ couplings : CP-violating

$$
\left.\mathcal{L}_{\mathrm{int}}=\sum_{v=\gamma, Z} g^{v}\left[V_{l}^{v} \bar{t} \gamma^{l}\left(F_{1 V}^{v}+F_{1 A}^{v} \gamma_{5}\right) t+\frac{i}{2 m_{t}} \partial_{\nu} V_{l} \bar{t} \sigma^{l \nu}\left(F_{2 V}^{v}+F_{2 A}^{v}\right)^{\prime}\right) t\right]
$$

$\square F_{2 A}^{\gamma}$ is the electric dipole moment which is forbidden in the SM
\rightarrow Probes for CP-violating beyond the Kobayashi-Maskawa mechanism eg) 2 HDM can yield ~ 0.01

Kinematical Reconstruction : True pairing

- Intersections of green and red lines are solutions in terms of $\left(\theta_{t}, \phi_{t}\right)$
- Blue line shows the comparison of the $E_{b}, E_{\bar{b}}$ between rec. and meas.
\rightarrow The optimal solution is selected obtained
$E_{\mu^{+}}^{* *}\left(\theta_{t}, \phi_{t}\right)=\frac{m_{W^{+}}}{2}$

$$
\chi_{b}^{2}=\left(\frac{E_{b}^{\text {meas. }}-E_{b}^{\text {rec. }}\left(\theta_{t}, \phi_{t}\right)}{\sigma\left[E_{b}^{\text {meas. }}\right]}\right)^{2}+\left(\frac{E_{\bar{b}}^{\text {meas. }}-E_{\bar{b}}^{\text {rec. }}\left(\theta_{t}, \phi_{t}\right)}{\sigma\left[E_{\bar{b}}^{\text {meas. }}\right]}\right)^{2}=20
$$

$E_{\mu^{*}}^{* *}\left(\theta_{t}, \phi_{t}\right)=\frac{m_{W^{-}}}{2}$

The energy of $\mu^{ \pm}$in $W^{ \pm}$ frame is equal to $m_{W^{ \pm}} / 2$

Kinematical Reconstruction : Miss pairing

- Blue line is far from intersections of green and red line
\rightarrow Miss pairing is excluded by the $E_{b}, E_{\bar{b}}$ comparision.

$$
E_{\mu^{+}}^{* *}\left(\theta_{t}, \phi_{t}\right)=\frac{m_{W^{+}}}{2}
$$

$$
\chi_{b}^{2}=\left(\frac{E_{b}^{\text {meas. }}-E_{b}^{\text {rec. }}\left(\theta_{t}, \phi_{t}\right)}{\sigma\left[E_{b}^{\text {meas. }}\right]}\right)^{2}+\left(\frac{E_{\bar{b}}^{\text {meas. }}-E_{\bar{b}}^{\text {rec. }}\left(\theta_{t}, \phi_{t}\right)}{\sigma\left[E_{\bar{b}}^{\text {meas. }}\right]}\right)^{2}=20
$$

$$
E_{\mu^{-}}^{* *}\left(\theta_{t}, \phi_{t}\right)=\frac{m_{W^{-}}}{2}
$$

The energy of $\mu^{ \pm}$in $W^{ \pm}$ frame is equal to $m_{W^{ \pm}} / 2$

