#### A simulation study of heavy Higgs bosons decaying to jets at high energy regions of the ILC

# by Christian Drews

#### 2017.04.10

Academic advisors: Professor Hitoshi Yamamoto (Tohoku Uni.) Professor Arno Straessner (TU Dresden)





# Outline

- Introduction to ILC
- Motivation of ILC
- Higgs Two Doublet Model
- Motivation for Charged Higgs Search at ILC
- Analysis Strategy
- Status
- Plan
- Summery

# Higgs Two Doublet Model (H2DM)

- Favorable in SUSY
  - Main motivation hierarchy problem
    (Higgs mass correction in SM to ~16 digits)
  - Dark matter, Gauge coupling unification (GUT)
- No conjugated potential in SUSY
  - To give mass to up and down type fermions
    -> two Higgs doublets
  - 8 degrees of freedom -> 5 Higgs bosons
  - 2 charged Higgs bosons (H+H-)

# Motivation for Charged Higgs Search at ILC

- e<sup>+</sup>e<sup>-</sup>-Collider very sensitive (up to kin. Limit)
- Light Higgs 125 GeV -> decoupling limit
  - Heavy Higgs to weak gauge boson coupling small
  - Makes fermion final state most promising
  - Hardly visible at LHC
- Very simple and well defined prosess
   e+e- -> H+H-

## Analysis Strategy

- m<sub>н+</sub> = 350 GeV
- $e^+e^- \rightarrow H^+H^- \rightarrow tb tb \rightarrow Wbb Wbb \xrightarrow{W \rightarrow 2 \text{ jets}} 8 \text{ jets}$
- Pairing 4 jets with lowest b tag to W mass
- Pairing 5<sup>th</sup> and 6<sup>th</sup> jet to top mass
- Pairing other jets to same invariant mass
- Background:
  - ttH/ttZ/ttg -> ttbb
  - tt -> bWbW
  - HA -> bbbb (SUSY)
- Later semi-leptonic mode will be included
  - One W -> lv (6 jets + lepton)



- Jet pairing has 40320 combinations
- With b tag consideration -> 576 combinations
- without exchanging jets from a given W-boson without exchanging H+ and H -> 36 combination
- For mass measurement the mass of H<sup>±</sup> can not be fixed

$$\chi^{2} = \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + \left( \frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + \left( \frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}} \right)^{2} + \left( \frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + \left( \frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$

#### Raw mass distribution



7

|                          | w/o overlay | w overlay |                                                                                                        |
|--------------------------|-------------|-----------|--------------------------------------------------------------------------------------------------------|
| B-tag efficiency         | 44.6        | 38.0      | the 4 b-jets have highest b-tag in the event                                                           |
| Clustering works<br>well | 50.7        | 40.2      | For every color singlet there are 2 jets with a major fraction from this singlet                       |
| Clustering works         | 95.8        | 92.5      | Clustering works well + one color singlet hos only<br>one jets with a major fraction from this singlet |
| Pairing works            | 27.8        | 17.2      | Jet pairing agrees with major color singlet fraction in jet                                            |

Beam background removed

$$\chi^{2} = \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + \left( \frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + \left( \frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}} \right)^{2} + \left( \frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + \left( \frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$

- Choose σ from pairing with generator information
- Optimize for c for maximal pairing efficiency

$$\chi^{2} = c_{H} \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + c_{t} \left( \frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + c_{t} \left( \frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}} \right)^{2} + c_{w} \left( \frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left( \frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$

 $\sigma_H = \sigma_t = 80 \ GeV, \ \sigma_W = 48 \ GeV$ 

 $\sim$ 

- Choose σ from pairing with generator information
- Optimize for c for maximal pairing efficiency

$$\chi^{2} = c_{H} \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + c_{t} \left( \frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + c_{w} \left( \frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left( \frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left( \frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left( \frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{cs\,\theta_{HH}} \left( \frac{1 - \cos\theta_{HH}}{\sigma_{\cos\theta_{HH}}} \right)^{2} + c_{\theta_{HH}} \left( \frac{\theta_{HH}}{\sigma_{\theta_{HH}}} \right)^{2} + c_{E} \left( \frac{E_{H^{-}} - E_{H^{+}}}{\sigma_{E}} \right)^{2} + c_{p} \left( \frac{\vec{p} - \vec{p}_{H^{+}}}{\sigma_{p}} \right)^{2}$$

#### Analysis Strategy – Beam Background

- In average 1.7 beam background events per bunch crossing
- Has major influence on jet clustering
- Use kt-algorithm from fastjet package to reduce background
  - R: Generalized radius of jets
  - Vary R to optimal mass resolution
- Use Durham algorithm for clustering

quark pair

11

 $e^+$ 

### Analysis Strategy – kt Algorithm (beam background removal)

• Calculate the distance between to all tracks

$$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \frac{\Delta R_{ij}}{R}$$

with  $\Delta R_{ij} = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$  $\eta$  pseudo rapidity,  $\phi$  azimuth

- Find smallest  $d_{ij}$
- If  $d_{ij} < d_{iB} = p_{Ti}^2$  merge tracks, if not remove Track (B: Beam)
  - Remove particles that are closer to the beam than to the closest track  $\ensuremath{\dot{i}}$
- Continue to step one until there are only the requested number of jets

### Analysis Strategy – Durham Algorithm (jet clustering)

• Calculate the distance between to all tracks

$$v_{ij} = 2(1 - \cos \theta_{ij})$$

with  $\theta_{ij}$  angle between tracks

- Find smallest  $v_{ij}$
- If  $\min(E_i, E_j)v_{ij} < y_{cut}$  merge tracks if not next higher  $v_{ij}$
- If there are no tracks to merge left, increase  $y_{\rm cut}\,$  until requested number of jets are found

#### Analysis Strategy – Check clustering

- Recover for every reconstructed track the origin particle from Monte Carlo Simulation
- Recover initial state parent
- Can only recover color singlet
- Four color singlets
- Major fraction of jet: correctly clustered energy
- Minor fractions of jet: missclustered energy

#### Analysis Strategy – Check clustering

- Recover for every reconstructed track the origin particle from Monte Carlo Simulation
- Recover initial state parent
- Can only recover color singlet
- Here: 4 color singlets
- Major fraction of jet: correctly clustered energy
- Minor fractions of jet: mis-clustered energy



- Correctly clustered and missclustered energy over total energy
- X-axes generalized radius R
- Error bars spread of the distribution





Reconstructed H<sup>+</sup> and H<sup>-</sup> mass with realistic clustering and pairing with generator information



Reconstructed H<sup>+</sup> and H<sup>-</sup> mass with realistic clustering and pairing with generator information

### Analysis Strategy - 3D display

- Event by event view of reconstructed jets (solid line) and generator quarks (dashed line)
- To analyze and check clustering and pairing



### Analysis Strategy - 3D display

- Event by event view of reconstructed jets (solid line) and generator quarks (dashed line)
- To analyze and check clustering and pairing



# **Analysis Strategy - CP Violation**

- Possible to measure in this channel
- Through decay with CP violating SUSY loops
- $\delta$  between 0.20 and 0.02 for tan(  $\beta$  ) between 5 and 30
- Semi-leptonic mode better  $~~\delta^{CP}_{f\overline{f}'} \propto \frac{1}{\tan\beta}$  suitable

$$\delta_{f\overline{f}'}^{CP} = \frac{BR(H^+ \to f\overline{f}') - BR(H^- \to \overline{f}f')}{BR(H^+ \to f\overline{f}') + BR(H^- \to \overline{f}f')}$$

#### Status

- Pairing optimization in prosess
- Best R for jet clustering
  - For charged Higgs between 1.1 and 1.4 (Impact on pairing has to be studied)
  - Around 1.0 for tth samples (consistent with older study at 1TeV (R = 1.2))
- Data samples were (finally) generated successfully
- Analyses environment is set and partially tested on tth samples

# Schedule



# Plan

- Apply kt-algorithm on jet pairing
- Check Chi^2 Pairing with 3D display
- Develop extra conditions for pairing
- Include semi-leptonic mode (6 jets)
- Background study with cuts
- Goal:
  - mass fit -> mass resolution measurement
  - Detection efficiency
    -> cross section times branching ratio
- Bonus:
  - Research how to distinguish H+ and H-
  - Study of CP-violation measurement

### Backup

#### Higgs Recoil – Copied from Keisuke Fuji

#### At LHC all the measurements are $\sigma \times BR$ measurements.

At ILC all but the  $\sigma$  measurement using recoil mass technique is  $\sigma$ ×BR measurements.





Reconstructed top and anti top mass with realistic clustering and pairing with generator information (with tth samples)





- Testing with tth -> bqqbqqbb (same final state)
- Makes 40320 combinations
- With b tag consideration -> 576 combinations
- without jet 3 and 4, 7 and 8, 6 and 2, ... -> 36 combination

$$\chi^{2} = \left| \frac{(m_{j_{1}j_{2}})^{2} - (m_{h})^{2}}{\sigma_{h}} \right| + \left( \frac{m_{j_{3}j_{4}j_{5}} - M_{t}}{\sigma_{t}} \right)^{2} + \left( \frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}} \right)^{2} + \left( \frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + \left( \frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$

- Retracking pfo to MC part
- Separation of Colorsinglet
- Pairing Jets

|      | CS1 (%) | CS2 (%) |
|------|---------|---------|
| Jet1 | 0       | 100     |
| Jet2 | 100     | 0       |
| Jet3 | 100     | 0       |
| Jet4 | 0       | 100     |

- Retracking pfo to MC part
- Separation of Colorsinglet
- Pairing Jets

|      | CS1 (%) | CS2 (%) |
|------|---------|---------|
| Jet1 | 15      | 85      |
| Jet2 | 55      | 45      |
| Jet3 | 99      | 1       |
| Jet4 | 0       | 100     |

- Retracking pfo to MC part
- Separation of Colorsinglet
- Pairing Jets

|      | CS1 (%) | CS2 (%) |
|------|---------|---------|
| Jet1 | 60      | 40      |
| Jet2 | 55      | 45      |
| Jet3 | 99      | 1       |
| Jet4 | 0       | 100     |

- Retracing pfo to MC part
- Separation of Colorsinglet
- Pairing Jets

Correcting

|      | CS1 (%) | CS2 (%) |
|------|---------|---------|
| Jet1 | 60      | 40      |
| Jet2 | 55      | 45      |
| Jet3 | 99      | 1       |
| Jet4 | 0       | 100     |

#### Mass Calculation Worked

- bc == 1 means one correction is nesseary
- I only correct ones because correcting more then ones is difficult



#### **Correctly and Missclustered Energy**



#### **Different Algorithms**

• RefinedJets from LFCIplus

