MEASUREMENT OF $Br(H \rightarrow WW^*)$ AT CEPC

Liao Li-bo

Supervisors: Li Gang

Ruan Manqi

Outline:

- 1. Motivation
- 2. MC sample
- 3. Measurement of branch ratio
- 4. Summary

1. Motivation

- 1) This measurement is the most substantial channel to study Higgs to vector boson coupling behaviors at the CEPC.
- 2) The $Br(H \rightarrow WW^*)$ measurement is also a key ingredient for the determination of Higgs boson width.
- 3) It provides an excellent benchmark for the detector performance studies.

Excepted signal events of each type

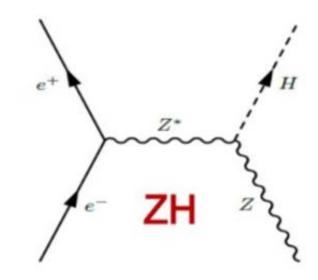
Z boson decay W boson decay	ee	μμ	ττ	νν	qq
$WW^* \rightarrow e \nu e \nu$	88	88	88	525	1836
$WW^* \to \mu\nu\mu\nu$	87	87	87	517	1808
$WW^* \rightarrow e \nu \mu \nu$	175	175	175	1052	3644
$WW^* \rightarrow e \nu \tau \nu$	187	187	188	1116	3901
$WW^* \rightarrow \mu \nu \tau \nu$	186	186	186	1107	3872
$WW^* \to \tau \nu \tau \nu$	99	99	99	593	2072
$WW^* \rightarrow e \nu q q$	1111	1112	1114	6612	23112
$WW^* \rightarrow \mu \nu qq$	1103	1104	1105	6562	22939
$WW^* \to \tau \nu qq$	1181	1182	1183	7025	24558
$WW^* \rightarrow qqqq$	3498	3502	3506	20808	72735

2. MC sample

Integrated luminosity: $5ab^{-1}$, $m_H = 125 \, \text{GeV}$, $\sqrt{s} = 250 \, \text{GeV}$

Tool:

Generator: Whizard 1.95


Simulation: Gent4

Particle reconstruction: Arbor_kd_3.3

Charged PID: LICH

Jet clustering: $ee - k_T$

Flavor tagging: LCFIPlus

Dominant diagram

Efficiency of lepton reconstruction

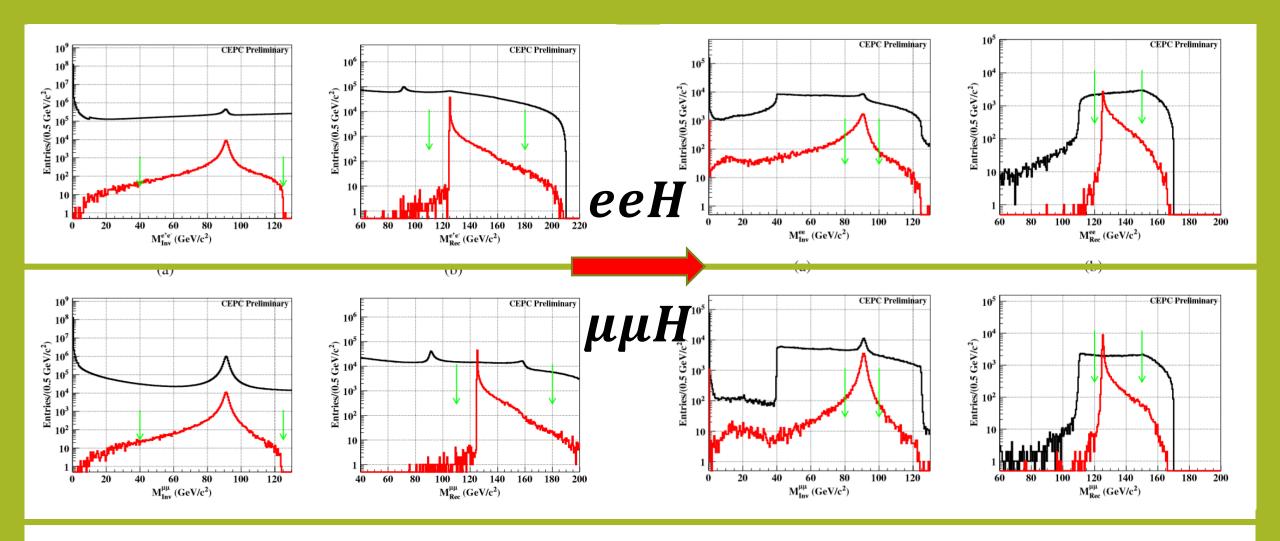
Z boson decay	W boson decay	Excepted	Yield	Observable	Efficiency
	evev	89	88	76	86%
	μνμν	87	89	80	90%
$\mu^+\mu^-$	evμv	176	174	157	90%
	evqq	1117	1105	1042	94.3%
1	$\mu \nu q \bar{q}$	1106	1110	1056	95.1%
	evev	95	91	62	68%
	μνμν	94	82	63	77%
e^+e^-	evμv	188	178	132	74%
	evqq	1195	1182	1041	80.1%
	$\mu \nu q \bar{q}$	1184	1221	1194	80.0%

Efficiency of electron: >90%

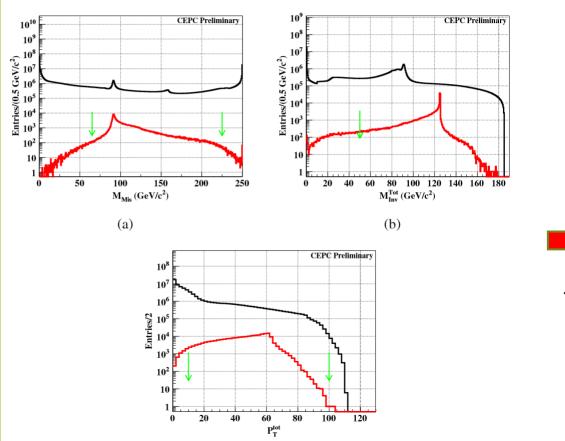
Efficiency of muon: >95%

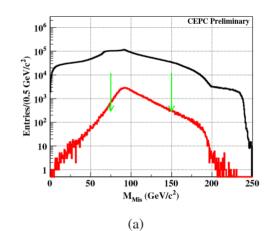
Table 5: Resonstruction efficiency of leptons in each decay channels. Excepted is the number of the theoretical events. Yield is the number of real generation events. Observable is the number of true events after leptons' and jets' number selection. The efficiency is observable over yield.

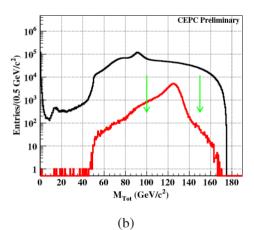
2.1 Pre-selection

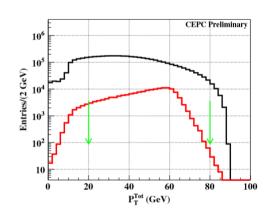

Key point:

Applied loose conditions in truth to make pre-selection reasonable.

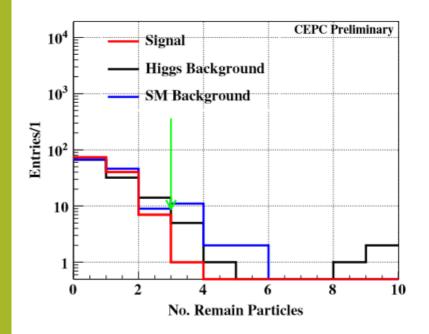

Four classes:

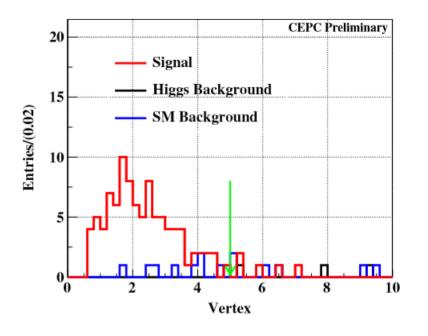

```
llH(l = e, \mu), \tau \tau H, \nu \nu H and qqH.
```


 $llH(l = e, \mu)$ and $\nu\nu H$ have been done.


Process of signal	eeH process	$\mu\mu H$ process
conditions of pre-selection	$40 \text{ GeV}/c^2 < M_{Inv}^{ee} < 130 \text{ GeV}/c^2$ $110 \text{ GeV}/c^2 < M_{Rec}^{ee} < 180 \text{ GeV}/c^2$	$40 \text{ GeV}/c^2 < M_{Inv}^{\mu\mu} < 130 \text{ GeV}/c^2$ $110 \text{ GeV}/c^2 < M_{Rec}^{\mu\mu} < 180 \text{ GeV}/c^2$
conditions of validation	$80 \text{ GeV}/c^2 < M_{Inv}^{ee} < 100 \text{ GeV}/c^2$ $120 \text{ GeV}/c^2 < M_{Rec}^{ee} < 150 \text{ GeV}/c^2$	$80 \text{ GeV}/c^2 < M_{Inv}^{\mu\mu} < 100 \text{ GeV}/c^2$ $120 \text{ GeV}/c^2 < M_{Rec}^{\mu\mu} < 150 \text{ GeV}/c^2$

Process of signal	$\nu \nu H$
	$65 \text{ GeV}/c^2 < M_{Mis} < 225 \text{ GeV}/c^2$
conditions of pre-selection	$M_{Tot} > 50 \text{ GeV}/c^2$
	$10 \text{ GeV}/c < p_T < 100 \text{ GeV}/c$
	$75 \text{ GeV}/c^2 < M_{Mis} < 150 \text{ GeV}/c^2$
conditions of validation	$100 \text{ GeV}/c^2 < M_{Tot} < 150 \text{ GeV}/c^2$
	$20 \text{ GeV}/c < p_T < 80 \text{ GeV}/c$

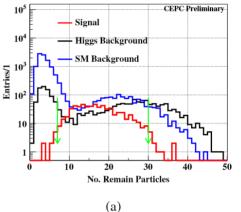

3. Measurement of branch ratio


Three typical sub-channels would be described in details:

1.
$$e^+e^- \rightarrow ZH$$
, $Z \rightarrow \mu^+\mu^-$, $H \rightarrow WW^* \rightarrow e\nu\mu\nu$
2. $e^+e^- \rightarrow ZH$, $Z \rightarrow e^+e^-$, $H \rightarrow WW^* \rightarrow \mu\nu qq$
3. $e^+e^- \rightarrow ZH$, $Z \rightarrow \nu\overline{\nu}$, $H \rightarrow WW^* \rightarrow qqqq$

Relative uncertainty results of the other sub-channels would be listed in the final page.

3.1 Event selection of $ZH \rightarrow \mu\mu\nu\nu\mu\nu$ process



Category	Signal	ZH background	SM background
Total	172	34624	700311
Validation of pre-selection	136	29263	117395
$N_{ZPole} = 2; N_{Isolep} = 2; l_1 = e, l_2 = \mu$	122	145	150
$N_{Remain} < 3$	121	113	122
$10 \text{ GeV} < M_{Inv}^{e\mu} < 65 \text{ GeV}$	116	101	87
$M_{Missing} < 65 \text{ GeV}/c^2$	110	26	36
$\sqrt{(\frac{D0}{sigD0})^2 + (\frac{Z0}{sigZ0})^2} < 5$	93	3	10

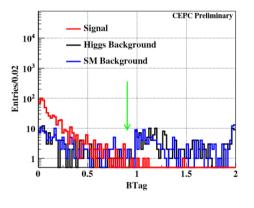
The main background of this channel is the events included τ or b-jet.

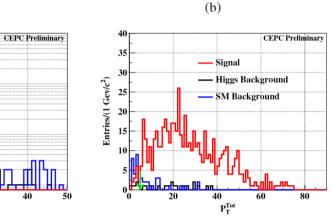
And after event selection, the main background is $e^+e^- \rightarrow ZZ \rightarrow \mu\mu\tau\tau$

3.2 Event selection of $ZH \rightarrow ee\mu\nu qq$ process

- Higgs Background

- SM Background

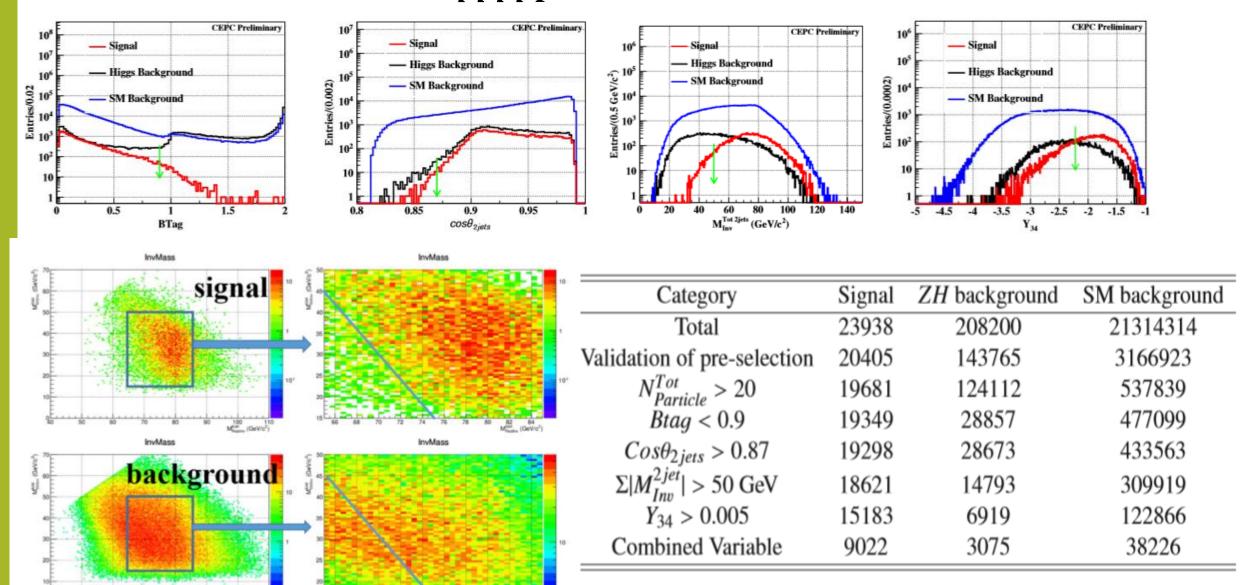

Signal


- Higgs Background

CEPC Preliminar

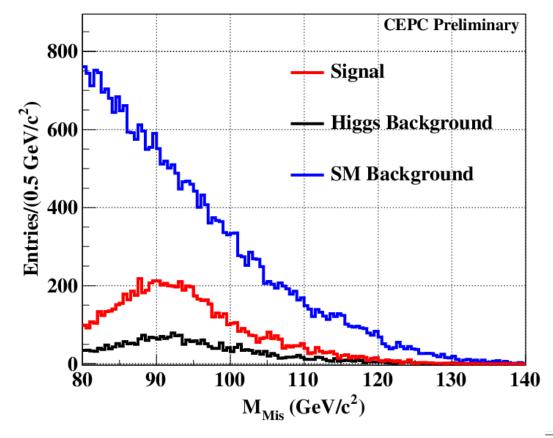
Entries/(1 Gev/c²) 01 01

Entries/(2 GeV/c²)



Category	Signal	ZH background	SM background
Total	1149	36319	1303847
$N_{ZPole} = 2; N_{Isolep} = 1; N_{Jets} = 2; l = \mu$	1022	1970	21857
Validation of pre-selection	631	1207	2987
$7 < N_{Remain} < 30$	603	540	436
$15 \text{ GeV}/c^2 < M_{Rec}^{di-Jet} < 95 \text{ GeV}/c^2$	589	284	278
Btag < 0.9	584	116	131
$M_{Missing} < 45 \text{ GeV}/c^2$	571	72	102
$\sqrt{\left(\frac{D0}{sigD0}\right)^2 + \left(\frac{Z0}{sigZ0}\right)^2} < 4$ $p_T > 5 \text{ GeV}$	564	23	45
$p_T > 5 \text{ GeV}$	551	18	21

The main background of this channel is the events included τ or b-jet.


And after event selection, the main background is $e^+e^- \rightarrow ZH \rightarrow ZWW^* \rightarrow \nu\nu\tau\nu qq$ $e^+e^- \rightarrow eeZ \rightarrow eeqq$

3.3 Event selection of $ZH \rightarrow \nu\nu qqqq$ process

3.3 Event selection of $ZH \rightarrow \nu\nu qqqq$ process

Final result:

After event selection, the main background is

$$e^+e^- \rightarrow ZH \rightarrow \nu\nu gg$$

 $e^+e^- \rightarrow WW \rightarrow \tau\nu qq$

Decay Chain	Final States	Number of Events
$e^+e^- \to ZH, Z \to \nu\bar{\nu}, H \to c\bar{c}$	$\nu, \bar{\nu}, c, \bar{c}$	176
$e^+e^- \to ZH, Z \to \nu\bar{\nu}, H \to b\bar{b}$	$ u,ar{ u},b,ar{b}$	337
$e^+e^- \to ZH, Z \to \nu\bar{\nu}, H \to gg$	$\nu, \bar{\nu}, 2g$	1881
$e^+e^- \to ZH, Z \to \nu\bar{\nu}, H \to ZZ^*, ZZ^* \to q\bar{q}q\bar{q}$	$\nu, \bar{\nu}, 2q, 2\bar{q}$	421
$e^+e^- o ZZ, ZZ o \nu \bar{\nu} q \bar{q}$	$ u,ar{ u},q,ar{q}$	2826
$e^+e^- \to ZZ, ZZ \to \tau^+\tau^- q\bar{q}$	$ au^+, au^-,q,ar{q}$	733
$e^+e^- \to WW, WW \to \tau \nu q\bar{q}$	$ au, u, q, ar{q}$	22580
$e^+e^- \to WW, WW \to \mu\nu q\bar{q}$	$\mu, u, q, ar{q}$	232
$e^+e^- \to \nu\bar{\nu}Z, Z \to q\bar{q}$	$ u,ar{ u},q,ar{q}$	1721
$e^+e^- \to evW, W \to evq\bar{q}$	e, v, q, \bar{q}	1168
$e^+e^- \to qq$	2q	227

5. Summary

The relative uncertainties of $Br(Z \to X)$, $Br(W \to X)$ and N_{Total} are negligible

Category	Signal	Relative uncertainty	Efficiency of selection	=
Category	Signai	Relative uncertainty	Efficiency of selection	_
$Z \to e^+e^-; H \to WW^* \to evev$	20 ± 7	35%	25.0%	
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow \mu\nu\mu\nu$	44 ± 8	18.2%	43.1%	
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow e\nu\mu\nu$	53±8	15.1%	27.6%	
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow e\nu qq$	435 ± 23	5.3%	37.0%	
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow \mu\nu qq$	551 ± 24	4.5%	48.0%	
$Z \to \mu^+ \mu^-; H \to WW^* \to evev$	23 ± 5	21.7%	25.8% ΔBr	$(H \rightarrow WW^*)$
$Z \to \mu^+ \mu^-; H \to WW^* \to \mu\nu\mu\nu$	39 ± 7	18%	44.8% $Rr($	$\overline{(H \rightarrow WW^*)} = 1.40\%$
$Z \to \mu^+ \mu^-; H \to WW^* \to e \nu \mu \nu$	93 ± 10	11%	54.1%	
$Z \to \mu^+ \mu^-; H \to WW^* \to e\nu qq$	573 ± 25	4.0%	51.7%	
$Z \to \mu^+ \mu^-; H \to WW^* \to \mu\nu qq$	756 ± 30	4.4%	68.4%	
$Z \to \nu \bar{\nu}; H \to WW^* \to qqqq$	8403 ± 202	2.4%	34.7%	
$Z \to \mu^+ \mu^-; H \to WW^* \to qqqq$	±	2.93% Wei	Yuqian's work	_

To do:

- 1, optimize the cut chain
- 2, do a reasonable fit
- 3, analysis the other sub-channel

Thank you!