TPC DD4HEP Detector Model

Talk given at the ILD Software meeting in Lyon and feedback

Dimitra Tsionou
On behalf of the LCTPC collaboration
ILD Software and Technical Meeting
26-Apr-2017

Dimensions

- > We have started looking into the TPC DD4HEP detector model
- Model exported from Mokka (ILD_o1_v5)
- > Dimensions in agreement with DBD
 - Inner radius: 329mm, Outer radius: 1808 mm, half length: 2350 mm
 - Inner wall thickness: 25mm, Outer wall thickness: 60mm
 - Inner and Outer radius of sensitive volume: 384-1718 mm (222 pad rows of 6mm height)
- In agreement with model ILD_I1_v01

> ILD_s1_v01 also checked → Difference in outer radius and subsequently in sensitive volume

Barrel Dimensions

ILD	1	V	0:	1

+ -	+													
+	Mater	ial scan between	$: x_0 = ($	0.00,	0.00, 5	0.00) [cm] a	nd x_1 = (20	0.00, 0.00	0, 50.00) [cm] :				
	Num. Layer		Atom Number/Z		Density [g/cm3]	Radiation Length [cm]	Interaction Length [cm]	Thickness [cm]	Path Length [cm]	Integrated XO [cm]	Integrated Lambda [cm]	Material Endpoint (cm,	cm,	cm)
ì	1	Air	7	14.801	0.0012	30280.1689	66568.7074	32.900	32.90	0.001087	0.000494	(32.90.	0.00.	0.00)
4	2	G4_Al	13	26.982	2.6990	8.8789	38.8766	0.001	32.90	0.001199	0.000520	(32.90,	0.00,	0.00)
Inner field		G4_KAPTON	6	12.701	1.4200	28.5903	24.8436	0.005	32.91	0.001374	0.000721	(32.91,	0.00,	0.00)
#		g10	11	21.318	1.7000	16.1529	68.2164	0.030	32.94	0.003231	0.001161	(32.94,	0.00,	0.00)
太	8 5	G4_AIR	7	14.801	0.0012	30280.1689	66568.7074	2.422	35.36	0.003311	0.001197	(35.36,	0.00,	0.00)
#	6	0	11	21.318	1.7000	16.1529	68.2164	0.030	35.39	0.005169	0.001637	(35.39,	0.00,	0.00)
₽		G4_KAPTON	6	12.701	1.4200	28.5903	24.8436	0.005	35.39	0.005343	0.001838	(35.39,	0.00,	0.00)
		G4_Cu	29	63.546	8.9600	1.4352	15.5141	0.007	35.40	0.010221	0.002290	(35.40.	0.00.	0.00)
		TDR_gas	17	38.746	0.0017	11539.6342	69059.7950	3.000	38.40	0.010481	0.002333	(38.40,	0.00,	0.00)
	10	TDR_gas	17	38.746	0.0017	11539.6342	69059.7950	0.300	38.70	0.010507	0.002337	(38.70,	0.00,	0.00)
	454	TDR_gas	17	38.746	0.0017	11539.6342	69059.7950	0.200	171.80	0.022041	0.004265	(171.80,	0.00,	0.00)
		TDR gas	17	38.746	0.0017	11539.6342	69059.7950	3.000	174.80	0.022301	0.004203	(174.80,	0.00,	0.00)
		G4 Cu	29	63.546	8.9600	1.4352	15.5141	0.007	174.81	0.027178	0.004759	(174.81,	0.00,	0.00)
9		G4_KAPTON	6	12.701	1.4200	28.5903	24.8436	0.005	174.81	0.027353	0.004961	(174.81,	0.00,	0.00)
field	458		11	21.318	1.7000	16.1529	68.2164	0.030	174.84	0.029211	0.005400	(174.84,	0.00,	0.00)
Ξ	4 59	G4_AIR	7	14.801	0.0012	30280.1689	66568.7074	5.922	180.76	0.029406	0.005489	(180.76,	0.00,	0.00)
Outer	3460	g10	11	21.318	1.7000	16.1529	68.2164	0.030	180.79	0.031263	0.005929	(180.79,	0.00,	0.00)
\sim		G4_KAPTON	6	12.701	1.4200	28.5903	24.8436	0.005	180.80	0.031438	0.006130	(180.80,	0.00,	0.00)
O	462	G4_Al	13	26.982	2.6990	8.8789	38.8766	0.001	180.80	0.031551	0.006156	(180.80,	0.00,	0.00)
	463	Air	7	14.801	0.0012	30280.1689	66568.7074	19.200	200.00	0.032185	0.006445	(200.00,	0.00,	0.00)
	0	Average Material	l 13	26.957	0.0034	6214.0706	31034.0836	200.000	200.00	0.032185	0.006445	(200.00,	0.00,	0.00)
			,											

ILD_s1_v01

	338 TDR_gas	17	38.746	0.0017	11539.6342	69059.7950	0.200	137.00	0.019025	0.003761 (137.00,	0.00,	0.00)
	339 TDR gas	17	38.746	0.0017	11539.6342	69059.7950	3.000	140.00	0.019285	0.003804 (140.00.	0.00,	0.00)
_	340 G4_Cu	29	63.546	8.9600	1.4352	15.5141	0.007	140.01	0.024163	0.004255 (140.01,	0.00,	0.00)
2	341 G4_KAPTON	6	12.701	1.4200	28.5903	24.8436	0.005	140.01	0.024338	0.004457 (140.01,	0.00,	0.00)
ے د	342 g10	11	21.318	1.7000	16.1529	68.2164	0.030	140.04	0.026195	0.004896 (140.04,	0.00,	0.00)
Ē	3343 G4_AIR	7	14.801	0.0012	30280.1689	66568.7074	5.922	145.96	0.026390	0.004985 (145.96,	0.00,	0.00)
ַ ק	344 g10 345 G4_KAPTON	11	21.318	1.7000	16.1529	68.2164	0.030	145.99	0.028248	0.005425 (145.99,	0.00,	0.00)
5 -	345 G4_KAPTON	6	12.701	1.4200	28.5903	24.8436	0.005	146.00	0.028423	0.005626 (146.00,	0.00,	0.00)
) _	346 G4_Al	13	26.982	2.6990	8.8789	38.8766	0.001	146.00	0.028535	0.005652 (146.00,	0.00,	0.00)
	347 Air	7	14.801	0.0012	30280.1689	66568.7074	54.000	200.00	0.030319	0.006463 (200.00,	0.00,	0.00)
-												
	O Average Material	12	24.959	0.0033	6596.6117	30943.5413	200.000	200.00	0.030319	0.006463 (200.00,	0.00,	0.00)

Barrel Description

- > While checking the material budget for the ILD TPC, one mismatch from expectation was seen
- > Both the inner and outer field cage walls had the same material budget 0.9% X_0
- \rightarrow DBD: 1% X_0 inner wall, 1% X_0 gas, 3% X_0 outer wall
- > Fix: Increase all materials by x3 for outer wall to reach desired material budget
- > Fix2: Change the order of Cu and Al. Now Cu is on the outside of the TPC → provides better shielding

Before

```
TPC10: Add Material to Outer Wall: dr = 0.07 mm. Material = G4_Cu X0 = 1.43516 0.00487749% X0 TPC10: Add Material to Outer Wall: dr = 0.05 mm. Material = G4_KAPTON X0 = 28.5903 0.000174884% X0 TPC10: Add Material to Outer Wall: dr = 0.3 mm. Material = g10 X0 = 16.1529 0.00185725% X0 TPC10: Add Material to Outer Wall: dr = 59.22 mm. Material = G4_AIR X0 = 30280.2 0.000195574% X0 TPC10: Add Material to Outer Wall: dr = 0.3 mm. Material = g10 X0 = 16.1529 0.00185725% X0 TPC10: Add Material to Outer Wall: dr = 0.05 mm. Material = g10 X0 = 16.1529 0.00185725% X0 TPC10: Add Material to Outer Wall: dr = 0.05 mm. Material = G4_KAPTON X0 = 28.5903 0.000174884% X0 TPC10: Add Material to Outer Wall: dr = 0.01 mm. Material = G4_AI X0 = 8.8789 0.000112627% X0 TPC10: Outer wall material corresponds to 0.9% of a radiation length.
```

Now

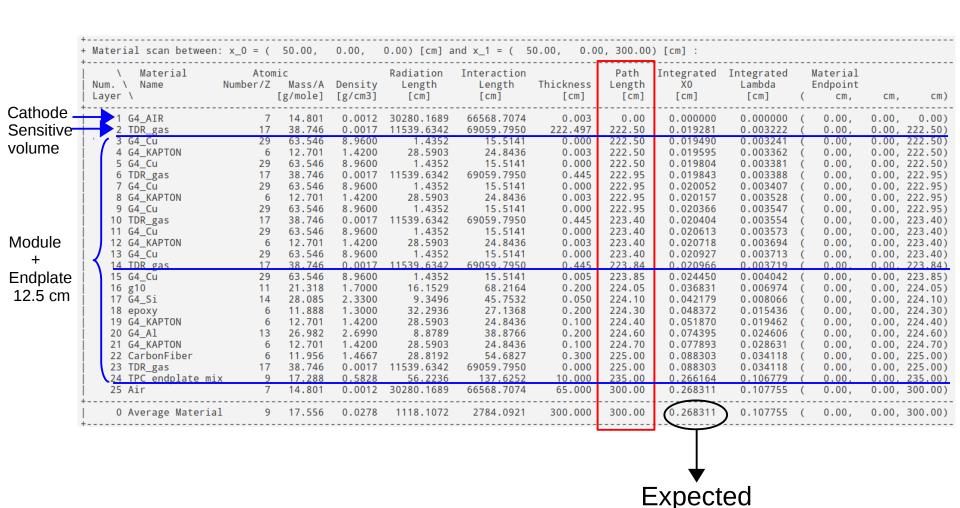
TPC10: Add Material to Outer Wall: dr = 0.03 mm. Material = G4_Al X0 = 8.8789 0.00033788% X0

TPC10: Add Material to Outer Wall: dr = 0.15 mm. Material = G4_KAPTON X0 = 28.5903 0.000524653% X0

TPC10: Add Material to Outer Wall: dr = 0.9 mm. Material = g10 X0 = 16.1529 0.00557174% X0

TPC10: Add Material to Outer Wall: dr = 57.66 mm. Material = G4_AIR X0 = 30280.2 0.000190422% X0

TPC10: Add Material to Outer Wall: dr = 0.9 mm. Material = g10 X0 = 16.1529 0.00557174% X0


TPC10: Add Material to Outer Wall: dr = 0.15 mm. Material = G4_KAPTON X0 = 28.5903 0.000524653% X0

TPC10: Add Material to Outer Wall: dr = 0.21 mm. Material = G4 Cu X0 = 1.43516 0.0146325% X0

TPC10: Outer wall material corresponds to 2.7% of a radiation length.

Air thickness slightly decreased to keep total dimensions unchanged

Endcap Dimensions

material budget

Cathode

> TPC cathode is positioned at z=0. MaterialScan command showed cathode as "air"

> However, the cathode was implemented in the TPC driver

- Cathode volume was not part of the TPC mother volume. Because of that, the cathode didn't appear with the materialScan command (it only appeared if the end limits were cutting through the cathode volume). Overlap command didn't show any problems
- > However, the cathode could be seen with the visualisation (geoDisplay)
- > Fix: Frank placed cathode volume as a part of the TPC mother volume
- > Fix2: Cathode made slightly thicker from 60µm to 100µm
 - 92 μm thick Kapton and on each side 4 μm Cu .

\ Material Num. \ Name Layer \	Atom Number/Z	ic Mass/A [g/mole]	Density [g/cm3]	Radiation Length [cm]	Interaction Length [cm]	Thickness [cm]	Path Length [cm]	Integrated XO [cm]	Integrated Lambda [cm]		aterial ndpoint cm,	cm,	cm)
1 TDR_gas 2 G4_Cu 3 G4_KAPTON 4 G4_KAPTON 5 G4_Cu 6 TDR_gas	17 29 6 6 29 17	38.746 63.546 12.701 12.701 63.546 38.746	0.0017 8.9600 1.4200 1.4200 8.9600 0.0017	11539.6342 1.4352 28.5903 28.5903 1.4352 11539.6342	69059.7950 15.5141 24.8436 24.8436 15.5141 69059.7950	9.995 0.000 0.005 0.005 0.000 9.995	10.00 10.00 10.00 10.00 10.00 20.00	0.000866 0.001145 0.001306 0.001467 0.001745 0.002612	0.000145 0.000171 0.000356 0.000541 0.000567 0.000711	((((((((((((((((((((0.00, 0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00, 0.00, 0.00,	10.00) 10.00) 10.00) 10.00) 10.00) 20.00)
0 Average Material	. 12	26.954	0.0027	7658.4155	28115.8466	20.000	20.00	0.002612	0.000711	(0.00,	0.00,	20.00)

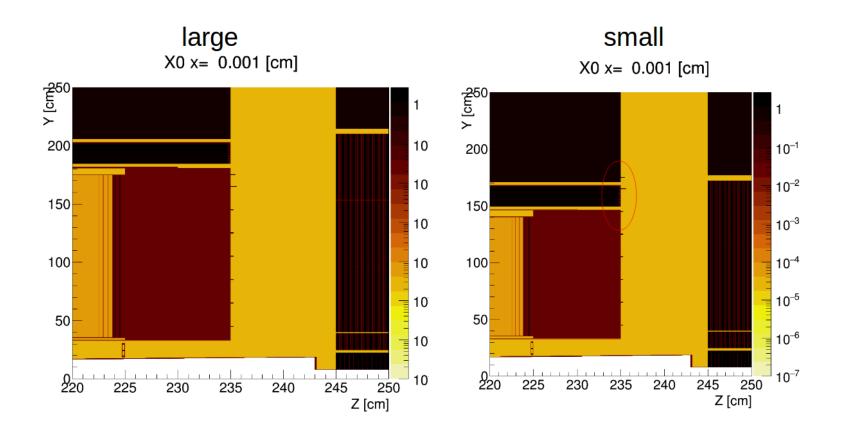
Point resolution parametrisation

- > Looking into digitisation code for point resolution parametrisation
- Comparing simulated/measured values for T2K gas with DD4HEP input (simulation for TDR gas)
- > Slight differences observed
- Overall: Similar description in rφ. We can do better in z wrt current model (~20% for z=0)
- > Discussed within the TPC collaboration.
- > Preference to keep current values for
 - ongoing analyses and compatibility
 - are a bit more conservative .
- Possibility to have two configurations for point resolution and the user can choose which one to use?
- Comment: TPC gas has not yet been decided

Summary

- > TPC DD4HEP model under investigation
- > Overall, the detector model depicts the anticipated ILD TPC
- > Few mismatches have been found and have been corrected
 - Field cage outer wall material budget
 - Cathode volume (implemented) and dimensions
- > Point resolution checked. Action to be decided
- > Remaining aspects to be investigated:
 - double hit resolution
 - available space wrt other sub-detectors
 - **?**

Discussion and outcome from Lyon Software meeting


- > Things to check / to be discussed
- > Double hit resolution
- Dead space between MPGD modules → Now full TPC is sensitive volume (222 pads of 6 mm height)
- Nailable space between detectors (Ecal is currently too small and will have to expand → smaller TPC?)
- > Cables,... material → eg voltage box for cathode?
- Cooling pipes → are they included in the endcap material budget of 25% X0?

Discussion and outcome from Lyon Software meeting

TPC services

From D. Jeans

cooling pipes not scaled in small models

Back-Up

