Stau coannihilation parameter fits

Essence of the talk: Split spectrum pMSSM now possible to fit Have started fits

10.5.2017

Motivation

 Stau coannihilation is one of the preferred mechanisms to explain dark matter in SUSY (pink areas)

Mastercode arXiv:1508.01173v1

Suvi-Leena Lehtinen (DESY) | ILD sw/ana | 10.5.2017 |

- Many particles accessible at √s = 500 GeV: important are χ̃₁⁰, χ̃₂⁰, χ̃₁[±], τ̃₁, ẽ_R, μ̃_R
- Stau-LSP mass difference 11 GeV (originally)
- \blacktriangleright Mass precisions \sim 0.1% after 2 imes 500 fb $^{-1}$
- Analysis paper arXiv:1508.04383, relic density study arXiv:1602.08439

$$ightarrow \widetilde{ au}_1 o \widetilde{\chi}_1^0 au$$
 endpoint $\implies \Delta m_{\widetilde{ au}_1} = 0.15\%$ (160 MeV)

- > Can discover all sleptons, sneutrinos, $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$
- > Precisions on masses after 500 fb⁻¹ for both $\mathcal{P}(\pm 0.8, \pm 0.3)$:

	$m_{\widetilde{\chi}_1^0}$	0.15%	$m_{\widetilde{\chi}^0_2}$	0.5%
analysis	$m_{\widetilde{ au}_1}$	0.16%	$m_{\widetilde{ au}_2}$	2.5%
[1508.04383v1]	$m_{\widetilde{e}_R}$	0.17%	$m_{\widetilde{\mu}_R}$	0.4%
	$m_{\widetilde{e}_L}$	1%	$m_{\widetilde{\mu}_L}$	1%
estimate	$m_{\widetilde{\nu}_e,\widetilde{\nu}_\mu,\widetilde{\nu}_ au}$	1%	$m_{\widetilde{\chi}_1^\pm}$	1%

First preliminary fits to original STC8 scenario

- Fit 13 independent parameters¹ with Fittino
- > Observables: slepton, sneutrino, $\widetilde{\chi}_1^0, \widetilde{\chi}_2^0, \widetilde{\chi}_1^\pm$ masses, Higgs
- Masses of unobserved sparticles and dark matter relic density are predicted

 ${}^{1}M_{1}, M_{2}, \mu, \tan \beta$, universal LH slepton mass, universal RH slepton mass, universal squark mass except third generation masses, $m_{A}, A_{t=b=\tau}, M_{3}$

- > A closer look at SUSY parameter χ^2 distributions shows that a longer fit is needed especially if reduce number of observables
- Predictions gets weaker if reduce number of observables and separate 1st and 2nd generation slepton parameters from 3rd generation slepton parameters
- Will make a modified scenario to evade current LHC heavy Higgs and other exclusion limits

