
Status of $h \to \mu^+ \mu^- \text{ analysis}$

I am sorry for interrupting Top/QCD meeting...

Quick Introduction

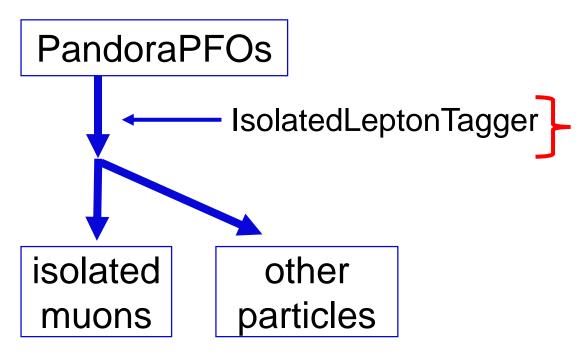
• $h \to \mu^+ \mu^-$ @ 500 GeV is selected as the one of the physics benchmark process of ILD optimization.

			tector models will be ased on physics perfo	rmance
	process	physics	detector performance	Ecm
	H—>cc	BR	c-tag, JER	any
	Η—>μμ	BR	high P tracking	500 GeV
	Η—>ττ	BR, CP	τ recon., PID, track separation	250 GeV
	H—>bb	M _H , BR	JES, JER, b-tag	500 GeV
	H—>invisible Z—>qq	Higgs Portal	JER	250 GeV
	evW—>evqq	M _w , TGC	JES, JER	500 GeV
	tt-bar—>6-jet	top coupling, A _{FB}	b-tag, jet charge	500 GeV
n	$\chi_1^+\chi_1^-, \chi_2^0\chi_1^0$ near degenerated	natural SUSY	low P tracking, PID	500 GeV
	γXX	WIMPs	Photon ER & ES, Hermiticity	500 GeV

What I Talked in Lyon

- Result of nnh500-L (left-handed) analysis
- Some plots for impact of momentum resolution
- Slide is: https://agenda.linearcollider.org/event/7520/contributions/389 01/attachments/31491/47426/SK_2017Apr25.pdf

Progress After Lyon

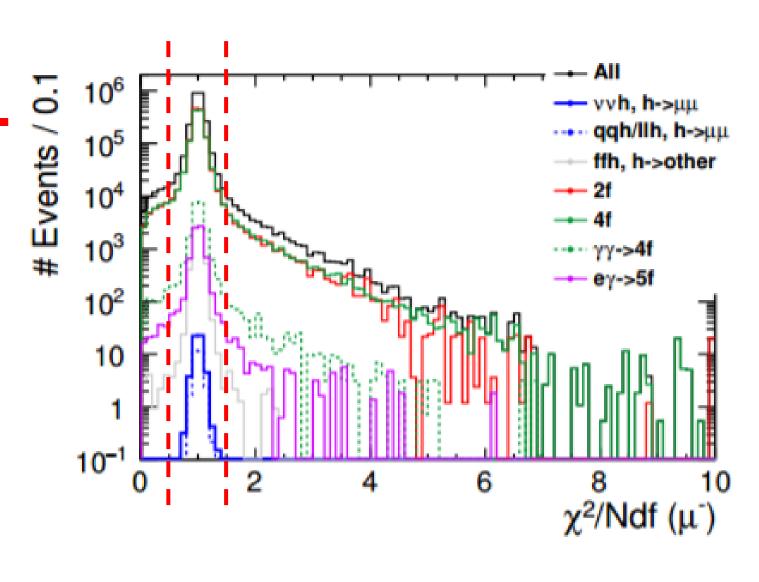

- Analysis of other channels
 - nnh500-L, nnh500-R (right-handed)
 - qqh500-L, qqh500-R: new study, first study with real analysis
 - MC samples increased a bit
 - I found a mistake in nnh500-L analysis ---> fixed and re-analyzed

- Personal analysis note is available: http://desy.de/~skawada/MyAnalysisNote/Analysis06_EN.pdf
 - Don't ask the quality of English, this is not a peer-reviewed paper!
 - JP ver. is also available.

Analysis Settings

- Fully-simulated MC samples at 500 GeV
 - DBD configurations
 - signal: ffh_mumu (analyzed nnh-L/R and qqh-L/R)
 - background: 2f, 4f, 5f, aa_4f, higgs_ffh
 - (As of 2016/Aug./2) (As of end of the year 2016)
 - 4f_ZZ_leptonic, 4f_singleW_leptonic, aa_4f(eevv, llvv) are increased (ELOG ID up to No. 30)

nnh500-L/R Analysis Flow

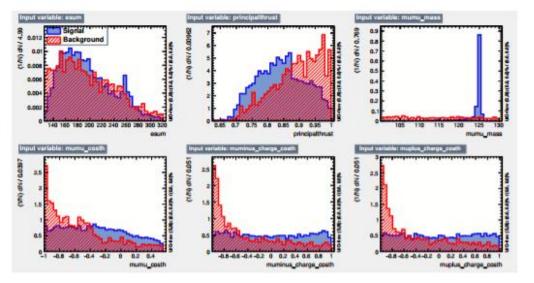

isolated electrons are included in "other particles"

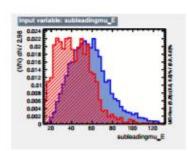
I accidentally set wrong value for MVA cut in electron in previous.

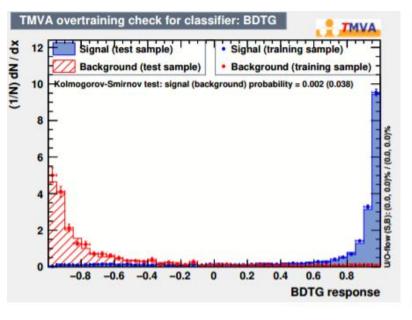
- ---> isolated electrons were included in "isolated muons" category.
- ---> now fixed, did similar analysis for nnh500-L
- ---> first real analysis on nnh500-R

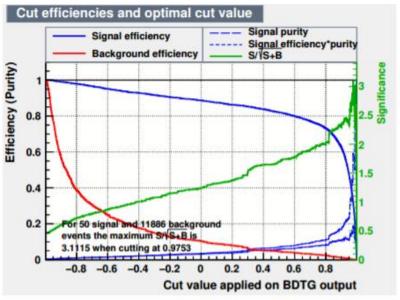
Precuts

- exactly one μ^+ and one μ^-
- $0.5 < \chi^2/\text{Ndf}(\mu^{\pm}) < 1.5$
- $\sigma(M_{\mu\mu}) < 1 \text{ GeV}$
- $100 < M_{\mu\mu} < 130 \text{ GeV}$
- $\cos \theta_{\mu\mu} < 0.55$
- $N_{P_t > 5 \text{GeV}} \leq 1$
- $125 < E_{\rm vis} < 320 {\rm GeV}$
- $P_t > 5 \text{ GeV}$
- $|\cos \theta_{\rm miss}| < 0.99$

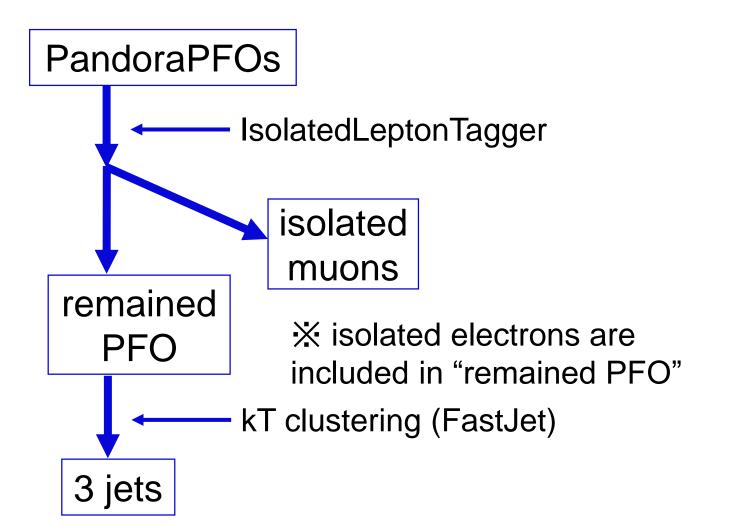



nnh500-L Precuts Cut Table


	$\nu\nu h$	$qqh+\ell\ell h$	ffh				
	$h o \mu\mu$	$h o \mu \mu$	$h \to \text{other}$	2f	4 f	$\gamma\gamma o 4{ m f}$	5f
No cut	57.53	31.13	4.116×10^{5}	4.224×10^{7}	4.592×10^{7}	3.356×10^{5}	2.231×10^{5}
$\# \mu^{\pm}$	54.82	27.72	6553.83	1.314×10^{6}	1.262×10^{6}	2.227×10^{4}	7206.44
χ^2/Ndf	54.21	27.51	6494.56	1.210×10^6	1.157×10^{6}	2.023×10^4	6775.69
$\sigma(M_{\mu\mu})$	53.68	27.06	6424.05	8.132×10^{5}	1.116×10^{6}	1.999×10^4	6665.11
$M_{\mu\mu}$	52.08	26.32	164.85	3.863×10^{4}	3.152×10^4	364.55	468.14
$\cos \theta_{\mu\mu}$	52.07	26.29	117.99	2.462×10^{4}	3.007×10^4	364.55	468.14
N_{P_t}	52.03	1.73	8.44	2.428×10^4	2.480×10^4	324.86	351.40
$E_{ m vis}$	51.29	0.19	4.85	1.267×10^{4}	1.391×10^4	265.82	240.07
P_t	51.11	0.11	4.85	1172.44	1.298×10^{4}	234.55	234.35
$\cos heta_{ m miss}$	50.07	0.08	4.85	208.25	1.126×10^{4}	210.81	190.87

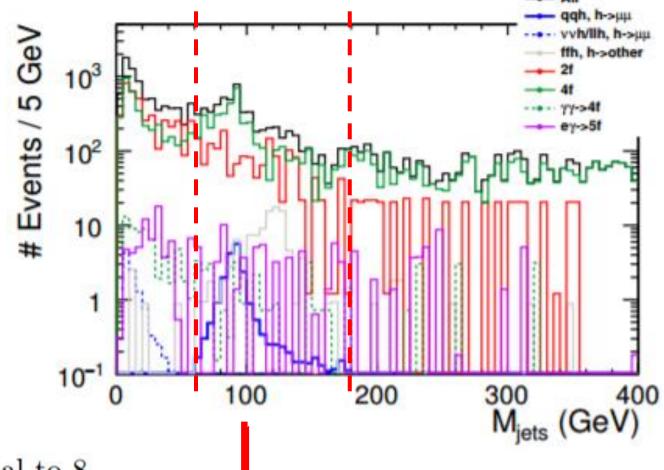

TMVA (BDTG) Analysis

- $E_{\rm vis}$, thrust
- $M_{\mu\mu}$, $\cos\theta_{\mu\mu}$
- charge * $\cos \theta_{\mu^+}$, charge * $\cos \theta_{\mu^-}$, $E_{\text{subleading}}$



 $N_{sig} = 16.25$, $N_{bkg} = 11.63$ signi. = 3.1 precision = 32%

qqh500-L/R Analysis Flow

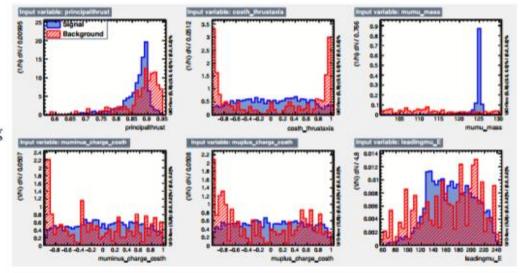


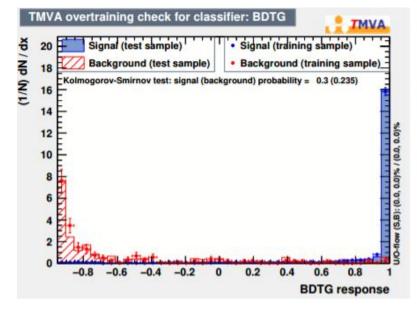
First real analysis (> 1 TeV: WWF dominant)

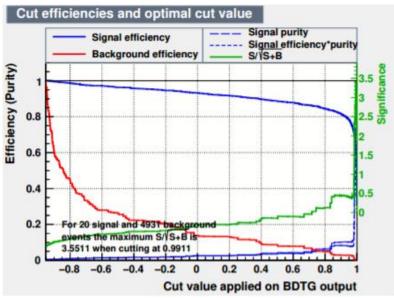
Probably more techniques can be applied in future.

Precuts

- exactly one μ^+ and one μ^-
- $0.5 < \chi^2/\mathrm{Ndf}(\mu^{\pm}) < 1.5$
- $\sigma(M_{\mu\mu}) < 1 \text{ GeV}$
- $100 < M_{\mu\mu} < 130 \text{ GeV}$
- $\cos \theta_{\mu\mu} < 0.55$
- number of jets is non-zero
- number of tracks should be grater or equal to 8
- $60 < M_{\rm jets} < 180 \text{ GeV}$
- thrust < 0.95




qqh500-L Precuts Cut Table


	qqh	$\nu\nu h + \ell\ell h$	ffh				
	$h o \mu\mu$	$h o \mu \mu$	$h \to \text{other}$	2f	4 f	$\gamma\gamma o 4{ m f}$	5f
No cut	24.56	64.10	4.116×10^{5}	4.224×10^{7}	4.592×10^{7}	3.356×10^{5}	2.231×10^{5}
$\# \mu^{\pm}$	22.76	59.72	6450.41	1.309×10^{6}	1.015×10^{6}	1.472×10^4	5922.55
χ^2/Ndf	22.59	59.07	6392.52	1.206×10^{6}	9.251×10^{5}	1.301×10^{4}	5526.02
$\sigma(M_{\mu\mu})$	22.19	58.50	6322.01	8.092×10^{5}	8.845×10^5	1.275×10^{4}	5415.43
$M_{\mu\mu}$	21.58	56.83	164.95	3.863×10^{4}	3.153×10^{4}	377.11	468.14
$\cos \theta_{\mu\mu}$	21.54	56.81	117.99	2.462×10^4	3.008×10^{4}	377.11	468.14
# jet	21.54	43.45	116.67	2.099×10^4	2.677×10^4	312.92	430.86
# tracks	21.54	13.05	112.87	5953.80	1.025×10^4	98.81	160.22
$M_{ m jets}$	19.99	0.83	101.17	1592.94	4049.17	25.42	56.36
thrust	19.90	0.83	101.17	1281.58	3492.73	21.39	56.36

TMVA (BDTG) Analysis

- thrust, $\cos \theta_{\text{thrust}}$
- \bullet $M_{\mu\mu}$
- charge * $\cos \theta_{\mu^+}$, charge * $\cos \theta_{\mu^-}$, E_{leading}

$$N_{sig} = 12.99, N_{bkg} = 0.39$$

signi. = 3.6
precision = 28%

Results

E _{CM} = 500 GeV	qqh	nnh
Left (L) 1600 fb ⁻¹	28%	32%
Right (R) 1600 fb ⁻¹	35%	63%

Combining these 4 results: 17%

(ref.: DESY seminar on 2017/Mar./14)

Comparison with Extrapolation (qqh500)

arXiv:1506.07830 [hep-ex] (ILC operating scenario)

$\int \mathcal{L} dt$ at \sqrt{s}	$250{\rm fb}^{-1}$ at	250 GeV	$330 \text{fb}^{-1} \text{ at } 3$	330 fb ⁻¹ at 350 GeV		$500 \text{fb}^{-1} \text{ at } 500 \text{GeV}$		
$P(e^-,e^+)$	(-80%,+30%)							
production	Zh	$v\bar{v}h$	Zh	$v\bar{v}h$	Zh	$v\bar{v}h$	t₹h	
decay	$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$							
$h \rightarrow \mu^+\mu^-$ [45]	72%	-	76%	140%	88%	72%	-	

[45] C. Calancha, private communication.

scale to 1600 fb⁻¹: ~50%

My result: 28% for qqh500-L factor ~2 better only qqh channel

Summary

- Analyzed 4 channels in total, bug fixed
- nnh500-L: not changed drastically
- qqh500: first real analysis, SIGNIFICANTLY BETTER than extrapolation!
 - qqh250 will provide better precision than qqh500, because we have more qqh signals at 250 GeV
- Combined precision: 17% <---> ~14% HL-LHC
 - Reached similar precision!

BACKUP

nnh500-R Precuts Cut Table

	$\nu\nu h$	$qqh+\ell\ell h$	ffh				
	$h o \mu\mu$	$h o \mu \mu$	$h \to \text{other}$	2f	4 f	$\gamma\gamma o 4{ m f}$	5f
No cut	7.93	20.71	1.274×10^{5}	2.820×10^{7}	1.744×10^{7}	3.356×10^{5}	1.472×10^{5}
$\# \mu^{\pm}$	7.48	18.38	3870.91	9.847×10^{5}	8.587×10^{5}	2.227×10^4	5773.28
χ^2/Ndf	7.41	18.26	3840.66	9.083×10^{5}	7.822×10^{5}	2.023×10^4	5411.67
$\sigma(M_{\mu\mu})$	7.31	17.97	3790.67	6.265×10^{5}	7.561×10^{5}	1.999×10^4	5326.57
$M_{\mu\mu}$	7.10	17.42	107.34	2.655×10^4	1.556×10^{4}	364.55	279.94
$\cos \theta_{\mu\mu}$	7.09	17.40	76.56	1.773×10^4	1.486×10^{4}	364.55	279.94
N_{P_t}	7.08	1.07	3.89	1.755×10^4	1.189×10^{4}	324.86	229.64
$E_{ m vis}$	6.77	0.14	2.83	9359.68	3625.09	265.82	160.85
P_t	6.76	0.09	2.83	1072.68	2937.32	234.55	154.87
$\cos heta_{ m miss}$	6.68	0.05	2.83	393.42	1587.83	210.81	134.19

qqh500-R Precuts Cut Table

	qqh	$\nu\nu h + \ell\ell h$	ffh				
	$h o \mu \mu$	$h o \mu \mu$	$h \to \text{other}$	2f	4 f	$\gamma\gamma o 4{ m f}$	5f
No cut	16.45	12.19	1.274×10^{5}	2.820×10^{7}	1.744×10^{7}	3.356×10^{5}	1.472×10^5
$\# \mu^{\pm}$	15.29	10.56	3843.84	9.802×10^{5}	6.168×10^{5}	1.472×10^4	4532.72
χ^2/Ndf	15.19	10.46	3815.54	9.043×10^{5}	5.552×10^{5}	1.301×10^{4}	4226.24
$\sigma(M_{\mu\mu})$	14.94	10.33	3765.55	6.226×10^5	5.294×10^5	1.275×10^{4}	4141.14
$M_{\mu\mu}$	14.51	10.01	109.04	2.655×10^4	1.556×10^{4}	377.11	279.94
$\cos \theta_{\mu\mu}$	14.49	10.01	76.56	1.773×10^4	1.486×10^{4}	377.11	279.94
# jet	14.49	8.29	75.64	1.529×10^4	1.417×10^4	312.92	257.74
# tracks	14.49	2.58	71.17	3464.06	4941.36	98.81	86.77
$M_{ m jets}$	13.38	0.49	67.08	898.60	1803.33	25.42	19.00
thrust	13.31	0.49	67.08	838.60	1646.66	21.39	19.00

Remaining Events at Precuts (qqh500-L)

- 2f_z_l
 - mumu(1281.58)
- 4f_sznu_I, 4f_zz_sI, 4f_ww_sI, 4f_zz_I, 4f_zzorww_I, 4f_sze_I
 - 2tau: 2q2tau(1.20), 2mu2tau(46.52)
 - Otau: 2q2mu(2513.03), 2q1mu1nu(140.89), 4mu(5.77), 2mu2nu(136.68), 2e2nu(648.65)
- aa_llvv, aa_llxx
 - Otau: 2mu2nu(11.98), 2q2mu(9.41)

MC Samples

- ffh_mumu @ 250 GeV: job submitted
- 500 GeV
 - 5f, aa_4f: looks like already finished (ELOG ID 53 & 54, need to confirm)
 - 4f: TODO
 - e2e2h & e3e3h: job submitted
 - processes need more stdhep:
 - small number: asked Mikael (7 processes)
 - large number: generator-level cut is needed, study ongoing