ILD ANALYSIS \& SOFTWARE MEETING - 24TH MAY

TOP ANALYSIS ACTIVITIES

@ IFIC-VALENCIA
M. BORONAT*, E. FULLANA*, J. FUSTER*, I. GARCÍA*, P. GOMIS*, M. PERELLÓ*, E. ROS*, M. A. VILLAREJO*, M. VOS*

INTRODUCTION TO THE OBSERVABLE: ISR

- The idea is to measure the top-quark mass $\left(m_{t}\right)$ measuring the differential cross section of the process $\mathrm{e}^{-} \mathrm{e}^{+} \rightarrow$ ttbar $\mathrm{Y}_{\mathrm{ISR}}$

- The ttbar production cross section is sensitive to the center of mass energy and m_{t}

$$
\sigma\left(e^{+} e^{-} \rightarrow t \bar{t}\right)=f\left(s, m_{t}\right)
$$

$$
s=\left(p_{e^{-}}+p_{e^{+}}\right)^{2}
$$

$$
\begin{aligned}
& \sigma\left(e^{+} e^{-} \rightarrow t \bar{t} \gamma\right)=f\left(s^{\prime}, m_{t}\right) \\
& s^{\prime}=\left(p_{e^{-}}^{\prime}+p_{e^{+}}^{\prime}\right)^{2}
\end{aligned}
$$

- The emitted YISR reduce the available energy for the ttbar production
- Therefore the ttbar production cross section is sensible to the emitted ISR photon energy in the ttbar + YISR 2 production

INTRODUCTION TO THE OBSERVABLE: ISR (l) ${ }^{(1)} \mathrm{S}_{\mathrm{a}_{0} \mathrm{~m}_{\mathrm{m} / \mathrm{s}} 5}$

- m_{t} can be measured by

$$
B\left(m_{t}, \zeta_{s^{\prime}}\right)=\frac{d \sigma_{t+\gamma}}{d \zeta_{s^{\prime}}} \longrightarrow \zeta_{s^{\prime}}=\sqrt{s^{\prime}}
$$

counting the ttbar events produced for a certain s^{\prime} (i.e ISR energy photon, which can be measured with high precision)

- Our observable $B\left(m_{t}, \zeta_{s^{\prime}}\right)$ is the differential cross section of the ttbar production as a function of $\zeta_{s^{\prime}}=\sqrt{s^{\prime}}$

$$
s^{\prime}=s\left(1-\frac{2 E_{\gamma}}{\sqrt{s}}\right)
$$

- The observable is more sensitive to m_{t} near the top production threshold, and the dependence diminishes as $\zeta_{s^{\prime}}$ grows

PARTON LEVEL STUDY: RESULTS

- From these template fits the top quark mass is estimated as the mean of the distribution and its error as the standard deviation
- The input MC mass is $m_{t}=173.1 \mathrm{GeV}$

$$
s=500 \mathrm{GeV}
$$

Integrated Luminosity	$m_{t}(\mathrm{GeV})$	$\Delta m_{\mathrm{t}}(\mathrm{MeV})$
$500 \mathrm{fb}^{-1}$	173.158	155
$1000 \mathrm{fb}^{-1}$	173.140	103
$2600 \mathrm{fb}^{-1}$	173.133	61

P. Gomis (Pablo.Gomis@ific.uv.es) @ ILD Analysis \& Software meeting - 08/02/2016

FULL SIMULATION STUDY: OUTLINE

NEXT STEPS

- Take into account the uncertainty of the luminosity spectrum to properly evaluate the systematics due to the luminosity smearing
- I am currently doing it for 380 GeV but we plan to include ILC configurations as well
- Improvements in the theoretical model:
- Currently one model valid at the peak, one model valid at the tail
- We need the proper overlap between the models

Introduction

$$
\mathcal{L}_{e f f}=\mathcal{L}_{S M}+\frac{1}{\Lambda^{2}} \sum_{i}^{C_{i} O_{i}}+\mathcal{O}\left(\Lambda^{-4}\right)
$$

Effective Field Theory

Sensivitity:
Relative change in crosssection due to non-zero operator coefficient $\Delta \sigma(\mathrm{C}) / \sigma / \Delta \mathrm{C}$

(multi-) TeV operation provides better sensitivity to contactinteraction operators.

Global fit

Central fit: Afb + total cross-section for the process $e^{+} e^{-} \rightarrow t \bar{t}$ 2 different beam polarizations in a realistic energy program.

$$
\text { ILC } \quad e^{+} e^{-} \rightarrow t \bar{t}, \text { LO } \quad \text { CLIC }
$$

Collaboration with Gauthier Durieux (DESY) and Cen Zhang (BNL) - to be published

- CPV observables for the electric and weak dipoles, Im\{CtW\} and $\operatorname{Im}\{\mathbf{C t B}\}$.

See next section ->

- Complementarity bottom-top.

Good for CphiQ(1) and CphiQ(3).
Single top production may help.
Extending the fit to the bottom sector can provide the additional constraint we need (but also adds further operators)

- Top decay width for $\operatorname{Re}\{\mathrm{CtW}\}$ and $\mathbf{C p h i Q (3)}$.

Good measurement at tt~ production threshold

- Top quark polarization at different axes.

Top quark electroweak coupling $\$$

Nacho_{0}
Garcie

- New physics can modify the electro-weak t̄tX vertex described in the SM
- $\mathbf{e}^{+} \mathbf{e}^{-}$colliders allow to probe these vertices directly. The leading-order process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \overline{t t}$ goes directly through the $\overline{\mathbf{t} Z} \mathbf{Z}$ and $\overline{\mathrm{t}} \boldsymbol{\gamma} \boldsymbol{\gamma}$ vertices

- $X=Z, \gamma$
- $V=$ Vector coupling
- A = Axial coupling
- A parametrisation of the $t \bar{t} X$ vertex for on-shell t and t and off-shell γ, Z is:

Optimal CP-odd observables

$$
e^{+}\left(\mathbf{p}_{+}, P_{e^{+}}\right)+e^{-}\left(\mathbf{p}_{-}, P_{e^{-}}\right) \quad \rightarrow \quad t\left(\mathbf{k}_{t}\right)+\bar{t}\left(\mathbf{k}_{\bar{t}}\right)
$$

The CP-violating effects in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{tt}^{-}$manifest themselves in specific top-spin effects, namely CP-odd top spin-momentum correlations and tt ${ }^{-}$spin correlations.

$$
\begin{aligned}
& t \bar{t} \rightarrow \\
& \ell^{+}\left(\mathbf{q}_{+}\right)+\nu_{\ell}+b+\bar{X}_{\mathrm{had}}\left(\mathbf{q}_{\bar{X}}\right) \\
& t \bar{t} \rightarrow \\
& X_{\mathrm{had}}\left(\mathbf{q}_{X}\right)+\ell^{-}\left(\mathbf{q}_{-}\right)+\bar{\nu}_{\ell}+\bar{b}
\end{aligned}
$$

Lepton+jets final state
The charged lepton is the best analyzer of the top spin

Optimal CP-odd observables

- CP-odd observables are defined with the four momenta available in tt semileptonic decay channel

$$
\begin{aligned}
& \mathcal{O}_{+}^{R e}=\left(\hat{\mathbf{q}}_{\bar{X}} \times \hat{\mathbf{q}}_{+}^{*}\right) \cdot \hat{\mathbf{p}}_{+}, \\
& \mathcal{O}_{+}^{I m}=-\left[1+\left(\frac{\sqrt{s}}{2 m_{t}}-1\right)\left(\hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+}\right)^{2} \hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{q}}_{\bar{X}}+\frac{\sqrt{s}}{2 m_{t}} \hat{\mathbf{q}}_{\bar{x}} \cdot \hat{\mathbf{p}}_{+} \hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{p}}_{+} .\right.
\end{aligned}
$$

- The way to extract the CP-violating form factor is to construct asymmetries sensitive to CP-violation effects

$$
\begin{aligned}
& \mathcal{A}^{R e}=\left\langle\mathcal{O}_{+}^{R e}\right\rangle-\left\langle\mathcal{O}_{-}^{R e}\right\rangle=c_{\gamma}(s) \operatorname{Re} F_{2 A}^{\gamma}+c_{Z}(s) \operatorname{Re} F_{2 A}^{Z} \\
& \mathcal{A}^{I m}=\left\langle\mathcal{O}_{+}^{I m}\right\rangle-\left\langle\mathcal{O}_{-}^{I m}\right\rangle=\tilde{c}_{\gamma}(s) \operatorname{Im} F_{2 A}^{\gamma}+\tilde{c}_{Z}(s) \operatorname{Im} F_{2 A}^{Z}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathcal{A}_{\gamma, Z}^{R e} & \mathcal{A}_{\gamma, Z}^{R e}{ }^{\mathrm{L}} \\
\mathcal{A}_{\gamma, Z}^{I m}{ }^{\mathrm{R}} & \mathcal{A}_{\gamma, Z}^{I{ }^{\mathrm{R}} \mathrm{R}}
\end{array}
$$

Simulation samples (6 f -> lepton+jets)

Full simulation
ILC@500GeV

```
500fb}\mp@subsup{}{}{-1},P(e-)=\mp80%,P(e+)=\mp30% (ILC LumiUp 4ab-1
```

CLIC@380GeV
$500 \mathrm{fb}^{-1}, \mathrm{P}(\mathrm{e}-)=\mp 80 \%$
Loose timing cuts
CLIC@1.4TeV
$1.5 \mathrm{ab}^{-1}, \mathrm{P}(\mathrm{e}-)=\mp 80 \%$
Tight timing cuts,
Efficiency inputs from Rickard and Martin top tagging studies

Fast Simulation

CLIC@3TeV
$3 \mathrm{ab}^{-1}, \mathrm{P}(\mathrm{e}-)=\mp 80 \%$
Extrapolate numbers from low-energy stages results

Prospects for CP-violating form fagiors

- The measurements at hadron colliders are expected to be considerably less precise than those that can be made at lepton colliders
- Nominal ILC and the CLIC low-energy stages have a very similar sensitivity to these form factors, reaching limits of $\mathbf{I F}_{2 A} \mathbf{l} \mathbf{l} \mathbf{< 0 . 0 1}$ for the EDF
- Assuming that systematic uncertainties can be controlled to the required level, a luminosity upgrade of both machines may bring a further improvement

