

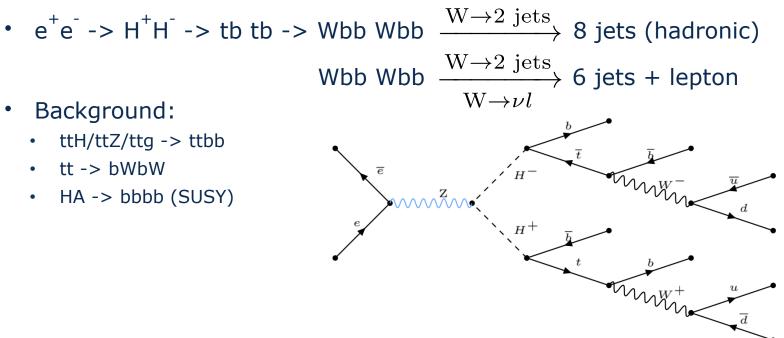
High Energy Accelerator Experiments Group

Tohoku University

STUDY OF CHARGED HIGGS BOSONS SEARCH AT THE ILC FOR A COLLISION ENERGY OF 1 TEV

Presentation by Christian Drews

Academic advisors:


Professor Hitoshi Yamamoto (Tohoku Uni.) Professor Arno Straessner (TU Dresden)

Overview

- $m_{H\pm} = 350 \text{ GeV}$ ٠
- Background: ٠
 - ttH/ttZ/ttg -> ttbb ٠
 - tt -> bWbW •
 - HA -> bbbb (SUSY) ٠

Lepton Selection

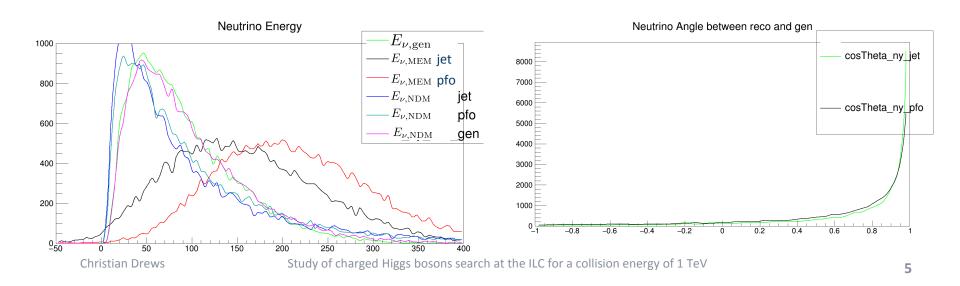
Using the IsolatedLeptonTaggingProcessor From MarilnReco

	Total (%)	w/o tau (%)
Lepton Tag	60.3	90.4
Correct Tag	60.0	90.0
False Lepton Tagged	0.3	0.4
Electron	29.5	89.4 (w/o tau and myon)
Myon	30.3	90.5 (w/o tau and electron)
False Lepton Tag in hadronic	2.1	

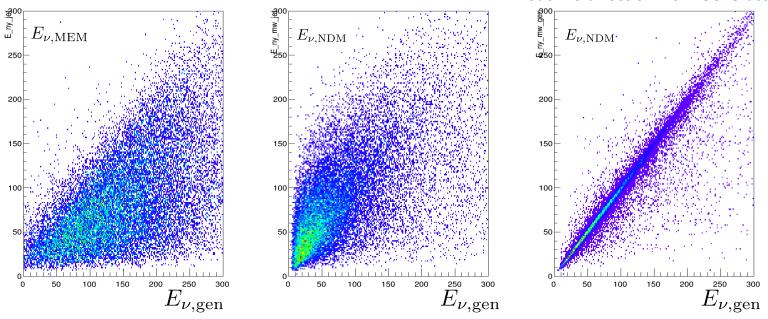
Neutrino Four-vector

• Method 1: Missing-Energy-Method (MEM)

$$p_{\rm vis} = \sum_{i=1}^{N_{\rm PFO}} p_i \qquad p_{\rm CMS} = (1000, 0, 0, 1000 \cdot \sin(0.014/2))$$
$$p_{\nu,\rm MEM} = (p_{\rm CMS} - p_{\rm vis})$$

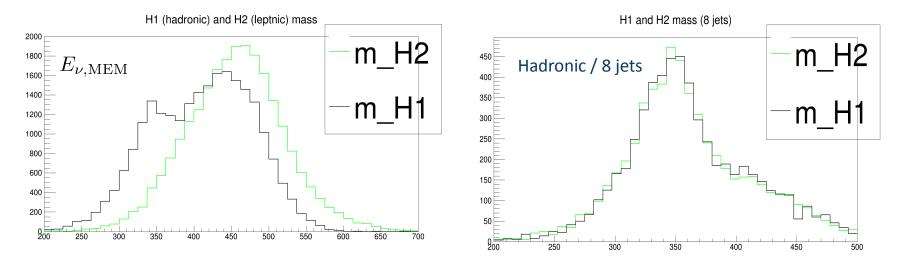

- Should I Sum pfos or jets? LCFIplus doesn't cluster all particles to jets?
- Method 2: Neutrino-Direction-Method (NDM)
 - Using the Direction of Missing-Energy-Method and calculationg the Enerty by fixing W-Mass $\vec{p_{\nu,\text{MEM}}} \cdot \vec{p_l}$

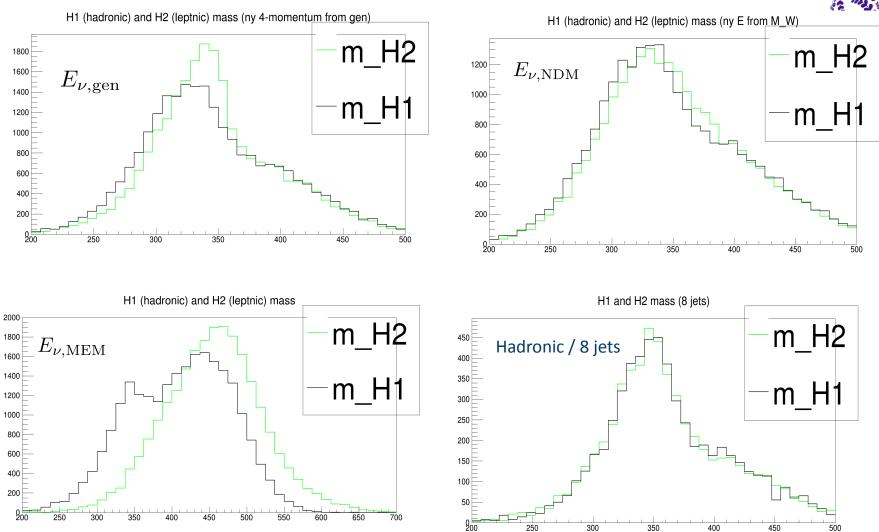
$$E_{\nu,\text{NDM}} = \frac{m_W^2}{E_l(1-\alpha)} \quad \alpha = \frac{p_{\nu,\text{MEM}} p_l}{|\vec{p}_{\nu,\text{MEM}}||\vec{p}_l|}$$
$$p_{\nu,\text{NDM}} = (E_{\nu,\text{NDM}}, E_{\nu,\text{NDM}} \frac{\vec{p}_{\nu,\text{MEM}}}{|\vec{p}_{\nu,\text{MEM}}|})$$


Neutrino Four-vector

Neutrino Four-vector

Neutrino direction from Generator




Higgs mass reconstructed with Jet pairing

Chi² minimization method

$$\chi^{2} = \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + \left(\frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}}\right)^{2} + \left(\frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}}\right)^{2} + \left(\frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}}\right)^{2} + \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}}\right)^{2}$$

Schedule

	Apr	May	Jun	Jul	Aug	Sep	Oct
Cluster Study							
Pairing Study							
Semi-leptonic							
Background /M	lass fit						
CP-Violation							
Writing							
		Today	y AWL	с			10/15

Plan

- Check Chi² Pairing with 3D display
- Develop extra conditions for pairing
- Include semi-leptonic mode (6 jets)
- Background study with cuts
- Goal:
 - mass fit -> mass resolution measurement
 - Detection efficiency
 -> cross section times branching ratio
- Bonus:
 - Research how to distinguish H+ and H-
 - Study of CP-violation measurement

Backup

Christian Drews

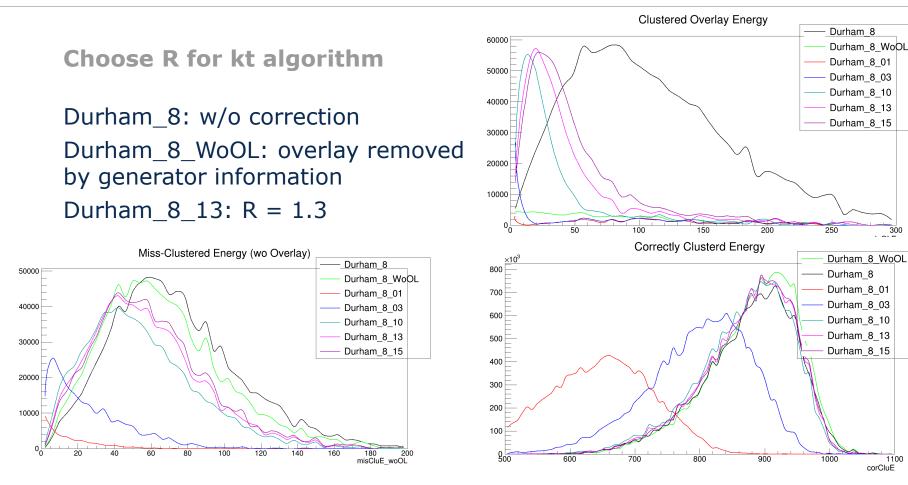
Analysis Strategy – Beam Background

- In average 2.7 beam background events per bunch crossing
- In these samples old number of 4.1 events per bunch crossing
- Has major influence on jet clustering
- Use kt-algorithm from fastjet package to reduce backgrond
 - R: Generalized radius of jets
 - Vary R to optimal mass resolution
- Use Satoru Jetfinder for clustering

quark pair *e*⁺

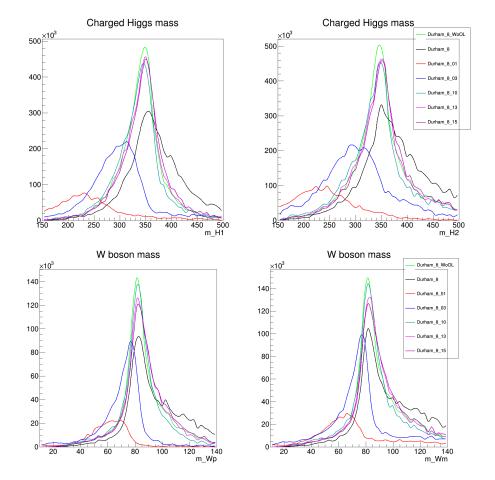
Fastjet Finder – kt Algorithm (beam background removal)

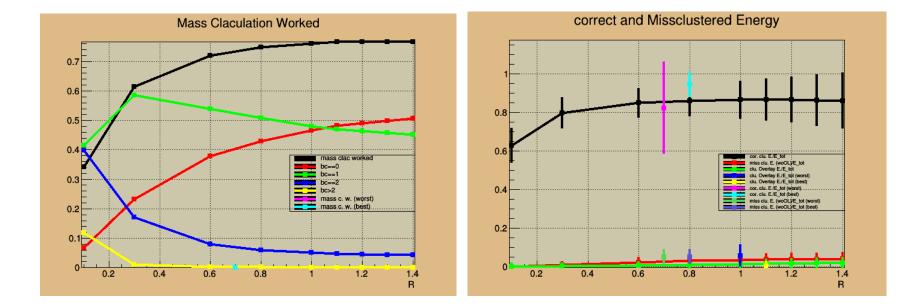
• Calculate the distance between to all tracks


$$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \frac{\Delta R_{ij}}{R}$$

with $\Delta R_{ij} = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$ η pseudo rapidity, ϕ azimuth

- Find smallest d_{ij}
- If $d_{ij} < d_{iB} = p_{Ti}^2$ merge tracks, if not remove Track (B: Beam)
 - Remove particles that are closer to the beam than to the closest track
- Continue to step one until there are only the requested number of jets




Choose R for kt algorithm

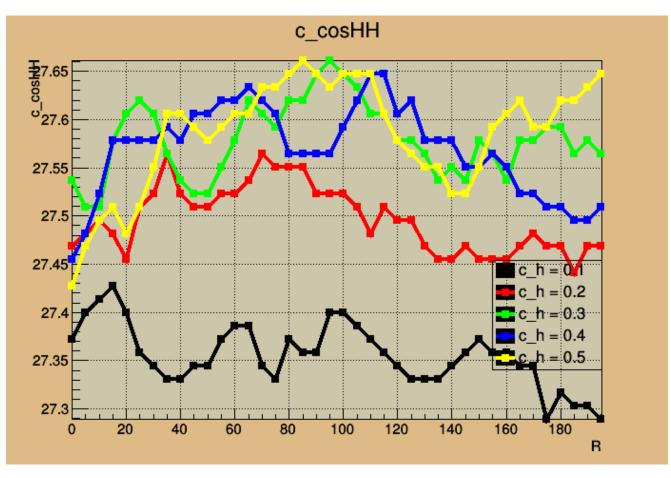
- For W mass R = 1.0 seems best
- For H mass R = 1.3 seems best
- Maybe b-jets have a wider spread
- I will continue with 1.3

	w/o overlay	R: 1.3	with overlay	
B-tag efficiency	44.6	42.5	38.0	the 4 b-jets have highest b-tag in the event
Clustering works well	50.7	49.4	40.2	For every color singlet there are 2 jets with a major fraction from this singlet
Clustering works	95.8	95.6	92.5	Clustering works well + one color singlet hos only one jets with a major fraction from this singlet
Pairing works	27.8	25.0	17.2	Jet pairing agrees with major color singlet fraction in jet

$$\chi^{2} = \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + \left(\frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + \left(\frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}} \right)^{2} + \left(\frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$

- Choose σ from pairing with generator information
- Optimize for c for maximal pairing efficiency

$$\chi^{2} = c_{H} \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + c_{t} \left(\frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + c_{t} \left(\frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}} \right)^{2} + c_{w} \left(\frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$


 $\sigma_{H}=\sigma_{t}=80~GeV,~\sigma_{W}=48~GeV$

- Choose σ from pairing with generator information
- Optimize for c for maximal pairing efficiency

$$\chi^{2} = c_{H} \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + c_{t} \left(\frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + c_{w} \left(\frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{cos\,\theta_{HH}} \left(\frac{1 - \cos\theta_{HH}}{\sigma_{cos\,\theta_{HH}}} \right)^{2} + c_{\theta_{HH}} \left(\frac{\theta_{HH}}{\sigma_{\theta_{HH}}} \right)^{2} + c_{E} \left(\frac{E_{H^{-}} - E_{H^{+}}}{\sigma_{E}} \right)^{2} + c_{p} \left(\frac{\vec{p} - \vec{p}_{H^{+}}}{\sigma_{p}} \right)^{2}$$

- First test optimization for c_H and c_cos
- c_H ~ 0.2 / c_cos ~ 30 (σ_cos = 1)
- Pairing efficiency 25 -> 27.5 %

$$\chi^{2} = c_{H} \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + c_{t} \left(\frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + c_{w} \left(\frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2} + c_{w} \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$

