Status of Higher Luminosity at 250GeV

K. Yokoya 2017.6.16 Parameter Group

2017/6/16 Param G, Yokoya

Possibility of Higher Lumi at 250GeV

- Luminosity at 250GeV with 1312 bunches (no 10Hz collision) is 0.82x10³⁴ /cm²s in TDR
- Luminosity formula

$$\mathcal{L} \approx C \frac{P_B}{E} \sqrt{\frac{\delta_{BS}}{\epsilon_{y,n}}} \min\left(1, \sqrt{\sigma_z/\beta_y}\right) \quad (1)$$

- C : universal constant
- PB = beam power
- The last factor express the hour-glass effect approximately
- δ_{BS} = beamstrahlung energy loss

$$\delta_{BS} = \left\langle -\frac{\Delta E}{E} \right\rangle \approx 0.836 \frac{N^2 r_e^3 \gamma}{\sigma_z \sigma_x^2}, \qquad (\Upsilon \ll 1, \ \sigma_x \gg \sigma_y)$$
(2)
Beam size at IP

$$\sigma_x = \sqrt{\frac{\epsilon_{x,n}\beta_x^*}{\gamma}} \quad (3)$$

- $\delta_{\rm BS}$ ~1% @250GeV in TDR suggests the possibility of higher luminosity with higher $\delta_{\rm BS}$
- To reduce σ_x seems to be the only way

How to reduce σ_x ?

- The simplest way is to reduce β_x
- But this will make the beam angle spread at IP larger

$$\theta_x^* = \sqrt{\frac{\epsilon_{x,n}}{\gamma \beta_x^*}} \qquad (4)$$

- \rightarrow larger beam size at the final quad QD0
- Synchrotron radiation from tail particles hit the quad, causing back ground
- These particles must be collimated out upstream
- The horizontal collimation depth is already ~ 6 σ_x

Horizontal Emittance

- $\sigma_{\rm x}$ can be reduced by reducing the horizontal emittance from DR
 - Present lattice is presumably conservative
 - Circular colliders assumes much more aggressive horizontal emittance
- If $\varepsilon_{x,n} \rightarrow \varepsilon_{x,n}/a$,
- Then, $\sigma_x \rightarrow \sigma_x$ /sqrt(a), $\delta_{BS} \rightarrow a \delta_{BS}$, L \rightarrow sqrt(a)L.
- This will make horizontal beam angle 1/sqrt(a) smaller.
- If we further make $\beta_x \rightarrow \beta_x / a$, then $\delta_{BS} \rightarrow a^2 \delta_{BS}$, L $\rightarrow aL$
- Smaller $\epsilon_{x,n}$ would also help at other energies
 - Luminosity increase may be small but at least FFS tuning would become easier (allow larger β_x for same σ_x)

Problems

- Obvious problems are
 - Is it possible to reduce $\varepsilon_{x,n}$ of DR?
 - Technically possible?
 - Manpower problem
 - Now, Kiyoshi is trying ...
 - Must include studies of e-cloud, FII, etc.
 - Disruption parameter too large

$$D_{x(y)} = \frac{2Nr_e}{\gamma} \frac{\sigma_z}{\sigma_{x(y)}(\sigma_x + \sigma_y)}$$
(5)

- Disruption parameter too large
 - $D_y \rightarrow aD_y$
 - Present D_v is already ~25
 - Feedback tolerance tighter

An Example Parameter Set

- Next page, right-most column
 - $\varepsilon_{x,n} \rightarrow \varepsilon_{x,n}$ /2, no change of β_x
- However, note that $D_x \sim 0.5$ is not negligible
 - This will cause effective σ_x smaller than σ_x /sqrt(2)
 - Hence, $\delta_{\rm BS}$ larger than 2 $\delta_{\rm BS}$, L larger than sqrt(2)L
- Beam-beam simulation being done by Daniel Jeans
 → talk by Daniel
 - First result shows L=1.65 x L_{TDR} = 1.35x10³⁴ /cm²s
- If everything is OK, may try smaller β_x
- Other parameter sets may also be possible
 - e.g., to increase β_{v} to relax the disruption

		DR (Combined TDR_machine_parameters_stamp.pdf and L study parameters 16-02-2012.xlsx										
					Baseline			1TeV			New	
								Full Power	A1	B1b		Param
Ecm		GeV	200	230	250	350	500	500	1000	1000		250
Ν		e10	2.0	2.0	2.0	2.0	2.0	2.0	1.737	1.737		2.0
Collision frequence	су	Hz	5.0	5.0	5.0	5.0	5.0	5.0	4.0	4.0		5.0
Electron linac rep	rate	Hz	10.0	10.0	10.0	5.0	5.0	5.0	4.0	4.0		5.0
Nb			1312	1312	1312	1312	1312	2625	2450	2450		1312
Bunch separation		ns	554	554	554	554	554	366	366	366		554
Beam current		mA	5.78	5.78	5.78	5.78	5.78	8.75	7.60	7.60		5.78
PB		MW	4.2	4.8	5.3	7.4	10.5	21.0	27.3	27.3		5.3
sigz		mm	0.3	0.3	0.3	0.3	0.3	0.3	0.25	0.225		0.3
sige(e-)		%	0.206	0.193	0.188	0.156	0.124	0.124	0.083	0.085		0.188
sige(e+)		%	0.187	0.163	0.15	0.1	0.07	0.07	0.043	0.047		0.15
enx		μm	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00		5.00
eny		nm	35.0	35.0	35.0	35.0	35.0	35.0	30.0	30.0		35.0
electron polarization		%	80	80	80	80	80	80	80	80		80
positron polarizati	ion	%	31	31	31	29	22	22	30	30		31
betax		mm	16.0	14.0	13.0	16.0	11.0	11.0	22.6	11.0		13.0
betay		mm	0.34	0.38	0.41	0.34	0.48	0.48	0.25	0.23		0.41
sigx		nm	904.2	788.7	729.0	683.5	474.2	474.2	480.6	335.3		515.5
sigy		nm	7.80	7.69	7.66	5.89	5.86	5.86	2.77	2.63		7.66
theta_x		μr	56.5	56.3	56.1	42.7	43.1	43.1	21.3	30.5		39.7
theta_y		μr	22.9	20.2	18.7	17.3	12.2	12.2	11.1	11.7		18.7
Dx			0.21	0.24	0.26	0.21	0.30	0.30	0.11	0.20		0.51
Dy			24.3	24.5	24.5	24.3	24.6	24.6	18.7	25.4		34.5
Upsilon (average)			0.013	0.017	0.020	0.030	0.062	0.062	0.128	0.203		0.028
Ngamma (formula	a)		0.95	1.08	1.16	1.23	1.72	1.72	1.43	1.97		1.62
deltaB (formula)		%	0.510	0.749	0.935	1.416	3.651	3.651	5.330	10.19		1.772
HDx			1.05	1.15	1.18	1.10	1.31	1.29	1.01	1.04		1.77
HDy			4.52	5.03	5.36	4.52	6.07	6.07	3.55	4.03		6.10
HD			1.69	1.84	1.90	1.73	2.09	2.07	1.53	1.62		2.43
Lgeo		1.0E+34	0.296	0.344	0.374	0.518	0.751	1.504	1.768	2.672		0.529
L (formula, no waist shift)		1.0E+34	0.501	0.632	0.712	0.896	1.567	3.117	2.706	4.337		1.285
L (simulation, waist shift)		1.0E+34	0.59	0.73	0.82	1.03	1.79	3.6	3.02	5.11		1.35
2017/6/16 Param G, Yokoya 7												

Re-visit Damping Ring Design

- Smaller horizontal emittance seems to be possible
 - Recent light sources adopt much more aggressive designs
- Kiyoshi Kubo is trying a new design
 - There is a space to lengthen the dipoles in the arcs
 - 3m → ~5m
 - Still conservative compared with light sources Original New (long bend)

2017/6/16 Param G, Yokoya

Emittance Results

Kubo April 2017		previous rep	oort	new re	sult
		Original	New (stronger focus)	New (long bend)	
Horizontal norr Emittance (um wo, w IBS	nalized)	5.74, 6.27	3.22, 4.00	3.14, 3.97	
Tune x/y	Tune x/y phase adv./cell /2pi x/y		57.79/26.46	49.33/26.86	
phase adv./cell			0.2788 /0.08	0.2250 /0.0808	
Damping time:	x/y/z (ms)	23.9/23.9/11.9	23.9/23.9/11.9	25.5/25.5/12.8	

Some surveys of phase advances/cell and total tunes were performed, for good dynamic aperture. (Surveys were not complete.)

Almost the same emittance as in the previous report but

Dynamic Aperture

Dynamic aperture greatly improved!

Dynamic aperture: long bend Misalignment + correction

New arc cell: long (5 m) bend Quadrupole & sextupole offset: 50 um tune/cell: x.225 y.0808 Quadrupole roll: 100 urad Tune: x49.33 y26.86 BPM offset: 100 um BPM roll: 10 mrad **COD & Dispersion correction** 8 7 y amplitude (mm^{1/2} 6 5 4 3 2 1 0 -2 -6 x amplitude (mm^{1/2})

Beam-Beam Simulation

- Being done by Daniel Jeans
 - Sensitivity against vertical offset
 - Incoherent pairs
 - MC simulation
- To be reported in detail in AWLC

Sensitivity against vertical offset

- Deflection angle vs. offset does not change much from TDR
 - Turning point >> 50nm (dynamic range of feedback)
- Luminosity larger than TDR for $\Delta x < \sim 1 \mu m$

Incoherent Pairs

• Number of pairs increases by 2~3x

Landau-Lifshits	$e^+ e^- \rightarrow e^+ e^- e^+ e^-$	L		
Bethe-Heitler	$e^{+-} '\gamma' \rightarrow e^{+-} e^+ e^-$	L n _y		
Breit-Wheeler	'γ' 'γ' → e ⁺ e ⁻	L n _y ²		
'γ' = beamstrahlung p	hoton	z = 30mm		
set1: TDR set3: TDR- set17: TDR- set18: TDR- TDR-500	$ \begin{aligned} & F \mathbf{\varepsilon}_{\mathbf{x}} \\ & F \mathbf{\varepsilon}_{\mathbf{x}} / \mathbf{\beta}_{\mathbf{x}} \\ & F \mathbf{\varepsilon}_{\mathbf{x}} / \mathbf{\beta}_{\mathbf{x}} / \mathbf{\beta}_{\mathbf{y}} \end{aligned} $			
2017/6/16 Param G, Yokoya	0 radius	[mm] 20		