Intensity-dependent effects at ATF2

P. Korysko CERN

Outline

- •Context.
- ATF2.
- PLACET simulations.
- Measurements at ATF2.
- Analysis: first results.

Context

CLIC (Compact Linear Collider)

- e+/e- collision (up to 3 TeV).
- Acceleration using a drive beam.
- CLIC Final Focus System based on a local chromaticity correction scheme created by A. Seryi and P. Raimondi.

ATF2

ATF2 twiss parameters with Placet

Transfer of status

Wakepotentials for C-band and S-band BPMs

Wakepotentials used for simulations created with GdfidL by A. Lyapin.

In simulations:

- 15 stripline BPMs (not wakefield sources)
- 26 C-bend BPMs
- 1 S-bend BPM

Source: A. Lyapin, J. Snuverink and al., *Measurements and simulations of wakefields at the Accelerator Test Facility 2*, Phys. Rev. Accel. Beams 19, 091002 https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.19.091002

Intensity-dependent effects on bunch distribution at IP

	Charge 1e9	Charge 5e9	Charge 1e10
Case	σy (nm)	σy (nm)	σy (nm)
No offset	37.59	37.59	37.59
1σy offset	53.95	70.00	149.90
1σy' offset	56.15	133.80	251.79

Banana effect.

Beam jitter with charge

Beam size at the IP for a jittering beam at injection (vertical position and vertical angle jitter, 1000 cases)

June 27th 2017

Beam jitter with charge

June 27th 2017

Intensity dependence parameter = 22.6123 nm/e9 (slope)

Beam Based Alignment studies

Case	Vertical beam size (nm)
No correction	9796.23
1to1	581.93
1to1 + DFS	469.46
1to1 + DFS + WFS	469.45
1to1 + DFS + WFS + knobs	37.41

Fast knobs used:

<y,y'> <y,E> <y,x'> <y,x'²> <y,x'*y'> <y,x'*E> 1st order 2nd order

June 27th 2017

Transfer of status

June 27th 2017

Higher charge → smaller orbit?

At IP, higher charge \rightarrow bigger beam

BPMs simulations without WFS

Vertical beam size (nm)

June 27th 2017

Wakefield Free Steering is not the problem

Conclusion: We actually observe that: higher charge → smaller orbit

June 27th 2017

Transfer of status

BPMs measurements (remark)

BPMs resolution

Source: Y. I. Kim et al., Cavity beam position monitor system for the Accelerator Test Facility 2. Phys. Rev. ST Accel. Beams 15, Apr 2012. https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.15.042801

BPMs resolution

The BPMs "charge-dependence-resolution" doesn't seem to be the source of the problem.

June 27th 2017

Calculating the initial jitter

Transfer of status

Calculating the initial jitter

$$\begin{vmatrix} y_{1} \\ y_{2} \\ \vdots \\ \vdots \\ y_{n} \end{vmatrix} = \begin{vmatrix} R_{0 \to 1, 33} & R_{0 \to 1, 34} & R_{0 \to 1, 36} \\ R_{0 \to 2, 33} & R_{0 \to 2, 34} & R_{0 \to 2, 36} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ R_{0 \to n, 33} & R_{0 \to n, 34} & R_{0 \to n, 36} \end{vmatrix} \begin{pmatrix} y_{0} \\ y_{0}' \\ y_{0}' \\ \delta_{0} \end{pmatrix}$$

$$\vec{Y} \qquad R \qquad \vec{Y}_{0}$$

 $\vec{Y}_0 = (R^T R)^{-1} R^T \vec{Y}$

Calculating the initial jitter Wakefield map using BPMs orbit calculation (Simulation)

Remarks and conclusions

- 2 wakefield effects :
 - Banana effect (transverse: z-(x,y) correlation).
 - Energy loss (longitudinal: z-E correlation).
- Simulations and measurements seem to go in the same direction.

Outlook

• Short term studies:

- Pursue the studies on the intensity dependent effect observed at BPMs.

- Analyse experimental data using SVD to extract jitter, correlations, effective BPMs resolution, etc.

- Include more wakefield sources in the simulations.

- Try to reproduce in simulation the measured intensity dependence plot.

- Assess incoming beam jitter from experimental data.

• Long term studies:

- Find mitigation technics to achieve nominal IP beam size at 100% of nominal charge.

- Extrapolate these results to CLIC and ILC.

Further investigations

Try to answer these questions:

- What is the behavior of a sliced beam?
- What is the evolution of beam energy along the beam line?

Distribution of particles

June 27th 2017

Transfer of status

June 27th 2017

Transfer of status

32

Wakefield simulations

