

BEAMLINE HOM ABSORBER

O. Nezhevenko,

S. Nagaitsev, N. Solyak, V. Yakovlev Fermi National Laboratory

December 11, 2007

An ILC main linac rf unit.

RF frequency 1300 MHz
Accelerating gradient 31.5 MV/m
Average beam current in pulse 9 mA

Bunch charge 3.2 nC Bunch length σ_z =300µm Number of bunches per pulse 2625

Beam spectrum: 3.2 nC, $\sigma_z = 0.300$ mm, $\Delta f_{i,i+1} = 2.967$ MHz

T.Higo, et al, Ild ILC Workshop

HOM losses:

(M. Dohlus, absorber_zeuthen_dohlus.pdf)

$$f_{rep}$$
 = 5 Hz
 a) Collider (500GeV)
 losses per module (12x9cells):

 T_{HF} = 0.95 ms
 σ_{bunch} = 400 μ m
 P = 23.3 W

 N_{bunch} = 2820
 $P(f>$ 5 GHz) = 17.4 W

 q_{bunch} = 3.2 nC (9.5 mA)
 $P'(f>$ 10 GHz) = 12.7 W

 $P'(f>$ 20 GHz) = 8.1 W

 $P'(f>$ 50 GHz) = 3.0 W

A loss factor dependence vs. the bunch length (I. Zagorodnov, T. Weiland, TESLA 2003-19)

P'(f>100 GHz) = 0.7 W

$\sigma, \mu m$	Numerical	Analytical	TDR
1000	86.4	90.2	90.4
700	95.9	95.8	95.6
500	105	104	103
400	110	110	108
300	117	116	114
250	122	120	117
125	135	133	128
75	138	141	134
50	143	146	138

Table 1.Comparison of the numerical and analytical loss factors in V/pC.

For a 300- μ m bunch, the total losses in 8x9cells are about <u>16 W</u>. The cut - off frequency for TM01 mode is ~ 2.9 GHz. The power in the propagating modes equal ~ <u>12 W</u>.

Losses in the cryo-module:

```
Ohmic losses in the RF structure,
                                  2K:
                                              6.0 W
Vacuum chamber* (image currents), 4K:
                                              0.08 W
Bellows* (image currents),
                                  4K:
                                               0.07 W
Valve
                                  4K:
                                              0.01 W
                                  2K:
Static losses
                                              1.7 W
HOMs (estimations):
Vacuum chamber*,
                                  4K
                                               0.8 W
Bellows*,
                                   4K
                                               0.5 W
                                  2K
HOM losses in the RF cavities
                                        need to be determined!
(depend on the HOM absorber efficiency)
```

^{*}Stainless steel, no Cu coating

DESY HOM absorber:

- ➤ Lossy material- Ceradyne 137 CA.
- ➤ Various materials were investigated, and Ceradyne137 CA was found to be most relevant.
- \triangleright Parameters: ϵ =20-40, loss tangent 0.2-1.
- ➤ Ceradyne characterization:
 - •Cornell: 78 K, transmission line measurements (1-40 GHz);
 - •DESY: pillbox (2-9 GHz), X-band taper (10-15 GHz).

Absorption efficiency estimations.

Simple model of HOM absorber: the ring has the length of 50mm, internal diameter of 90 mm, and the thickness of 10mm (DESY style).

- ➤ At the frequencies higher than ~30 GHz absorption is about 20% and decreases when the frequency increases.
- Efficiency is smaller when the ring internal diameter is the same as the beam pipe diameter, or 78 mm.
- ➤ Various dimensions were analyzed and DESY dimensions were found optimal.
- ➤ Note that RF losses in the cavities increase with the frequency.
- ➤ HOM absorber efficiency will determine HOM losses in the cavities, and thus, the total cryogenic losses.

RF Unit Test Facility

10

Phase-1 Layout

12

12

Direct measurements of the HOM losses:

- •Measurements of the power dissipation in HOM absorbers at NML.
- ■The number of modules in NML will be increased one at a time;
- ■The power absorbed in HOM absorbers will be measured for different number of modules.
- ■The power loss vs. the number of modules will allow to extrapolate the losses distribution between the HOM absorbers and RF cavities for the long system.

Summary

The Ceradyne rings characterization is planned.

- •At frequencies below 10 GHz measurements are consistent (DESY);
- •At higher frequencies the measured data spread is higher (Cornell);
- •Special measurements are planned up to 40 GHz using tapered waveguide.

Calorimetric and temperature measurements of the losses in HOM beam pipe absorbers are planned.