Dual readout calorimetry in 4th Concept

Vito Di Benedetto

INFN Lecce and Università del Salento

Outline

- •The 4th Concept
- •ILCroot Offline Framework
- Hadronic Calorimeter geometry
- Calibration studies
- Conclusion

The 4th Concept detector

VXD (SiD Vertex)

•DCH (Clu Cou)

•ECAL (BGO Dual Readout)

HCAL (Fiber Dual Readout)

•MUDET (Dual Solenoid, Iron Free)

Subject of this talk

ILCRoot: summary of features

- CERN architecture (based on Alice's Aliroot)
- Full support provided by Brun, Carminati, Ferrari, et al.
- Uses ROOT as infrastructure
 - All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)
 - Extremely large community of users/developers
- Six MDC have proven robustness, reliability and portability
- Single framework, from generation to reconstruction through simulation. Don't forget analysis!!!

All the studies presented are performed by ILCRoot

The 4th Concept HCAL

• Cu + scintillating fibers + Čerenkov fibers

~1.4° tower aperture angle

• ~ 7.3 λ_{int} depth

Fully projective geometry

 Azimuth coverage down to ~2.8°

Barrel: 16384 towers

Endcaps: 7450 towers

Hadronic Calorimeter Towers

Bottom view of single tower

Top tower size: $\sim 8.1 \times 8.1 \text{ cm}^2$

Prospective view of clipped tower

Quite the same absorber/fiber ratio as DREAM

Tower length: 150 cm

500 µm radius plastic fibers

• Fiber stepping ~2 mm

 Number of fibers inside each tower: ~1600 equally subdivided between Scintillating and Čerenkov

 Each tower works as two independent towers in the same volume

Dual Readout Fibers Calorimeter

Bottom tower size: $\sim 4.4 \times 4.4 \text{ cm}^2$

Material Budget Map (Fibers)

Material Budget Map (Crystal+Fibers)

MonteCarlo

- ROOT provides the Virtual MonteCarlo (VMC) interface
- VMC allows to use several MonteCarlo (Geant3, Geant4, Fluka)
- The user can select at run time the MonteCarlo to perform the simulations without changing any line of the code

The results presented here have been simulated using Fluka

Calibration

The energy of HCAL is calibrated in 2 steps:

Calibrate with single 45 GeV e

raw E, and Es

Calibrate with single 45 GeV π^- and/or di-jet @ 91.2 GeV

 η_c , η_s and η_n

$$\eta_C = \left(\frac{e}{h}\right)_C$$
 $\eta_S = \left(\frac{e}{h}\right)_S$
 $\eta_n \text{ is for neutrons}$

$$\eta_{S} = \left(\frac{e}{h}\right)_{S}$$

First step calibration

Beam of 45 GeV e

Second step calibration

π^- @ 45 GeV

$$R(f_{em}) = f_{em} + \frac{1}{\eta} (1 - f_{em})$$

$$R = \frac{E_{RAW}}{E}$$

 f_{em} = em fraction of the hadronic shower

 η = em fraction in the fibers

hadronic energy:

Separation of the neutron component in the scintillation signal

Correlation between neutron signal and Čerenkov signal

π^- @ 45 GeV

Second step calibration

di-jet @ 91.2 GeV case

$$E_{\textit{Beam}} = \frac{E_{\textit{S}} - \lambda E_{\textit{C}}}{1 - \lambda} + \eta_{\textit{n}} E_{\textit{n}}$$

$$\lambda = \frac{1 - 1/\eta_S}{1 - 1/\eta_C}$$

#events = 744
$$x^2 = 854.39$$
 $x^2/ndf = 1.15$

$$\eta_c = 4.665$$
 $\eta_S = 1.114$

Calibrated energy: di-jet @ 91.2 GeV case using Triple Readout

$$E_{HCAL} = \frac{\eta_{S} E_{S}(\eta_{C} - 1) - \eta_{C} E_{C}(\eta_{S} - 1)}{\eta_{C} - \eta_{S}} + \eta_{n} E_{n}$$

HCAL resolution with single π^-

Reconstructed vs Beam Energy

Total Energy Resolution for di-jets

Energy Response

Small not uniform response

Cer #pe/GeV = 44.9

boundary

Beam of 45 GeV e

Scint #pe/GeV = 1074.2

Cer #pe/GeV = 43.8

core

Scint #pe/GeV = 1118.9

Top view of the shower of a 45 GeV e

boundary

core

Calorimeter response for 45 GeV e-

core

boundary

Calorimeter response for 45 GeV π^-

Beam of 45 GeV π^-

Birks recombination effect

Conclusion

- → The Dual/Triple Readout calorimetry is performing very well with data and simulations
- Need to work to understand the constant term in the energy resolution and make it more realistic
- → It is ready to do good Physics: see A. Mazzacane talk on Wednsday afternoon on Jet Reconstruction and Physics Performance with the 4th Concept
- → Now it is time to understand the dual readout in the crystals, looking at DREAM results and working with FermiLab

Thank you!

ZZvv event in ILCRoot

28