

Developments on MicroMegas for DHCAL

Jan Blaha

Laboratoire d'Annecy-le-Vieux de Physique des Particules

LCWS08 Workshop Chicago, 16 – 20 November 2008

Outline

- µMegas
- Readout electronics
- X-ray response
- Test beam results
- Large scale prototype
- Conclusion

MicroMEsh GAseous Structure

Description

- Gas (Argon + Isobutane)
- Hight voltage < 500 V
- High detection rates
- · Robust, relatively low cost
- Thickness 3.2 mm
- Delicate functioning (sparks)

Readout

- Analog for characterization
 - GASSIPLEX + CENTAURE DAQ
- Digital
 - HARDROC or DIRAC + DIF
 - + CrossDAQ or EUDET DAQ2

Bulk technology, 32x8 pads

HARDROC and **DIRAC**

HARDROC 1 (2) (LAL)

- Analog and digital readout
- 1 chip (16 mm², 19 mm²) 64 channels
- 2 (3) thresholds in 10 bit precision
- Digital memory for 128 events
- Gain 10 fC to 1 pC (5 pC to 10 pC)
- Low consumption < 10 μW/channel

DIRAC (IPNL)

- Digital readout
- 1 chip (7 mm²) 64 channels
- 3 thresholds in 8 bit precision
- Digital memory for 8 events
- 2 gains 3 fC to 200 fC (100 fC to 10 pC)
- Low consumption < 10 μW/channel

4 HARDROC for 8x32 pads

Digital InterFace

DIF board (LAPP):

- Independent board to have more flexibility
- It provides the communication with PCs and HARDROCs (DIRACs) USB through the intermediate board (InterDIF)
- It allows ASICs configuration and performs analog and digital readout

 Also compatible with SPIROC and SKYROC Powering FPGA DIF / SLAB

BB

MI

DHCAL

Connector DIF /DIF

Connector

InterDIF

J. Blaha, LCWS08

X-ray response

Set-up:

- ⁵⁵Fe source (5.9 keV)
- · Trigger on mesh
- · Analog readout

Energy resolution FWHM = 25.5%

Response vs pressure

Test beam (August 08)

Main objectives

- Prototypes diversity
- Pad homogeneity
- Efficiency and multiplicity
- Crosstalk study
- Behavior in hadronic showers

Collected data

- 50 and 200 GeV pions
- 200 GeV muons
- 200 GeV pions with and without iron absorber in front of the system

Set-up at H2 line SPS-CERN

Test beam (August 08)

Main objectives

- Prototypes diversity
- Pad homogeneity
- Efficiency and multiplicity
- Crosstalk study
- Behavior in hadronic showers

Collected data

- 50 and 200 GeV pions
- 200 GeV muons
- 200 GeV pions with and without iron absorber in front of the system

Set-up at H2 line SPS-CERN

Trigger -3 scintilatoros

Pedestal and noise performance

Pedestal vs pad

- Pedestal was set correctly for all the pads
- Pedestal and noise were stable over all the test beam period

Mean electronic noise

Electronics noise vs pad

MIP signal

Only events with single hit in 4 chambers are considered

MIP signal in single channel

10

Landau MPV (ADC counts)

Efficiency

	Efficiency
Chamber 0	97,05 ± 0,07%
Chamber 1	98,54 ± 0,05%
Chamber 2	92,99 ± 0,10%
Chamber 3	96,17 ± 0,07%

Golden events

Efficiency vs threshold

Count the Number of hit(s) in a

3x3 array around the expected hit

19/11/08 J. Blaha, LCWS08

Multiplicity

Pad multiplicity for two chambers (~ 80,000 events each) < 1.1

MicroMegas with digital readout

The first operational bulk µMegas with embedded readout electronics (TB in August 08):

Test beam (November 08)

T9 line (PS-CERN)

- 7 GeV Pions
- Old and new prototypes
- Data currently under study

m² μMegas prototype

m² prototype:

- ~10 000 channels
- Prototype to be ready for test beam 2009

Next step: m³ with ~ 400 000 readout channels

Ongoing simulation study for design optimization

m³ μMegas simulation

Optimization:

- · Material and dimension
- Readout cell size:
 - $0.5 \times 0.5 \text{ cm}^2$
 - 1 x 1 cm²
 - 2 x 2 cm²
 - $4 \times 4 \text{ cm}^2$

Energy resolution for 10 GeV pions (no threshold)

Longitudinal shower profile

Energy resolution vs pion energy

J. Blaha, LCWS08

Conclusions

• Several μ Megas prototypes have been successfully built and extensively tested

• The first μ Megas test beam results have showed very good performance complying with DHCAL needs

 Development of large scale prototypes is well underway and is going to be ready for a test beam 2009