

Linear Collider Workshop 2012, Arlington, USA

Structural studies for a realistic tungsten HCAL

F. Duarte Ramos, H. Gerwig

Outline

- CLIC HCAL barrel layout;
- Tungsten design constraints;
- Design alternatives;
- Tangential scintillator insertion design proposal;
- Assembly sequence.

CLIC HCAL layout

Fe Yoke CLIC_ILD 2350_{1 - 4T} W-HCAL Steel HCAL 3296 TPC **202**

	CLIC_ILD	CLIC_SiD	
HCAL: Barrel			
Absorber	Tungsten	Tungsten	
Sampling layers	$75 \times 10 \text{ mm}$	$75 \times 10 \text{ mm}$	
Cell size	30×30	30×30	
$\lambda_{ m I}$	7.5	7.5	
Inner radius	2058	1447	
Outer radius	3296	2624	
Max. Z	2350	1765	

Design constraints

Currently available plate sizes:

Pure Tungsten	Alloys (e.g. INERMET)	
1200 x 1600 mm ²	400 x 600 mm ²	

- Limited plate size → Pure tungsten;
- Poor W machinability;
- High W brittleness;

Design constraints

- Highly segmented HCAL (75 layers) \rightarrow High # of (fragile / expensive) plates;
- 10 mm thick plates;
- Loose mechanical tolerances:
 - Flatness tolerance ca. 1.5 mm (< 1 mm possible);
 - Thickness tolerance ± 0.5 mm (with machining ± $0.1 \text{ mm} - \text{cost } \uparrow$);
- Need to minimize machining and handling risks.

HCAL barrel design alternatives

Axial sensitive layer insertion

Tangential sensitive layer insertion

HCAL barrel design alternatives

	Axial sensitive layer insertion	Tangential sensitive layer insertion
Stiffness in transverse plane		
Load bearing tungsten plates		
Access to services		
()	()	()

Tangential design

Functional unit – Drawer

- 5 tungsten layers;
- 2 SST support rails;
- 15 drawers per sector (=75 layers);
- Flexibility in plate dimensions;
- Max. size $3493 \times 1535 \times 82.5 \text{ mm}^3$;
- Maximum weight 5.04 tonne;

Functional unit – Drawer

- Minimal tolerance stacking;
- Only 2 machined surfaces per plate;
- End stoppers on the drawer prevent plate slide in case of joint failure;

HCAL barrel frame

- 3 SST frames/rings (each 1565 mm wide);
- 8 sectors per frame;
- HCAL structural integrity provided by the frame;

Purpose:

Maximize the HCAL stiffness with minimal material addition

HCAL barrel frame

- Slots cut on the side plates to receive the drawers;
- Drawers secured in place with M8 bolts;
- Joint SST-Tungsten only holds the weight of the W plate;

Width not instrumented – 54 mm per frame (3.5% of total

Barrel support rails

HCAL barrel wheel

HCAL wheel deformation

HCAL wheel deformation

HCAL wheel stress

HCAL wheel support

Assembly

The first step will be to assemble the frame:

Assembly

• In the next step, the drawers are inserted:

... followed by the insertion of the sensitive layers;

Assembly

 Finally, the support rails are attached after the sensitive layers are in place:

Summary

- Pure tungsten presents numerous challenges from the mechanical point of view;
- Two main HCAL design alternatives exist;
- Choice between the two will be governed mainly by the access/maintenance scenarios;
- A realistic HCAL barrel design has been proposed;
- Stiffness, manufacturing and assembly constraints are satisfied.

Thank You.