

Forward Calorimeters for ILC and CLIC detectors

Wolfgang Lohmann,
BTU and DESY

On behalf of the FCAL collaboration

Labs involved: Argonne, Vinca Inst, Belgrade, Bukharest IFIN-HH & ISS, CERN, Univ. of Colorado, Cracow AGH-UST & IFJ-PAN, JINR Dubna, NCPHEP Minsk, Santa Cruz, Stanford University, SLAC, Tuhoku Univ., Tel Aviv Univ., DESY (Z.), Pontificia Universidad Católica, Chile

October 24, 2012 LCWS Arlington 1

Forward region

LumiCal

LumiCal:

precise luminosity measurement, 10⁻³ at ILC, 10⁻² at 3 TeV

BeamCal (and Pair Monitor):

- hermeticity (electron detection at low polar angles),
- assisting beam tuning (fast feedback from BeamCal and pair monitor data to machine)

Challenges:

- radiation hardness (BeamCal),
- high precision (LumiCal) and
- fast readout (both)

Calorimeter, general structure

Technology choice: Finely segmented compact calorimeters

- Tungsten thickness 1 X₀, 30 layers
- BeamCal sensors GaAs, 500 μm thick
- LumiCal sensors silicon, 320 μm thick
- FE ASICs positioned at the outer radius
- BeamCal angular coverage 5.8 43.5 mrad
- LumiCal coverage 31 78 mrad

Luminosity:

 $\mathcal{L} = N / \sigma$

Bhabha scattering:

Source	Value	Uncertainty	Luminosity Uncertainty
σ_{θ}	$2.2{ imes}10^{-2}$ [mrad]	100%	1.6×10^{-4}
Δ_{θ}	$3.2{ imes}10^{-3}$ [mrad]	100%	1.6×10^{-4}
$a_{\rm res}$	0.21	15%	10^{-4}
luminosity spectrum			10^{-3}
bunch sizes σ_x , σ_z ,	655 nm, 300 μm	5%	1.5×10^{-3}
two photon events	2.3×10^{-3}	40%	0.9×10^{-3}
energy scale	$400\mathrm{MeV}$	100%	10^{-3}
polarisation, e ⁻ , e ⁺	0.8, 0.6	0.0025	1.9×10^{-4}
total uncertainty			2.3×10^{-3}

Vertex detector

Port tube

Laser beam

Laser alignment system (LAS) integrated in the QD0 alignment

^{* 100%=} Upper limit – the size of effect is taken as uncertainty

Detector Design Studies, 3 TeV

CLIC challenges:

- Beam induced background in LumiCal (occupancy)
- Read-out speed (.5 ns between BX)
- Luminosity spectrum

The precise knowledge of the spectrum shape is essential for the precision of the luminosity measurement!!

(how to determine -see talk by Andre Sailer)

LumiCal

p in n, strip pitch 2.2 mm 40 pieces, joint effort IFJ PAN Cracow, DESY, TAU

BeamCal

Compensated GaAs

~ 10 pieces,

Institute in Tomsk, DESY-JINR collaboration (BMBF supported)

ASICs

SLAC/ Universidad Católica, Chile (BeamCal)

- Prototypes in 180-nm TSMC process
- Charge sensitive preamplifier
- Analog adder to provide fast feedback
- ADC: 10-bit SAR ADC
- Preparation for beam-test foreseen

Pair Monitor readout (Tohuku Univ.)

- •Silicon On Insulator (SOI) technology first The sensor and readout electronics are integrated in the SOI substrate. (monolithic)
- •SOI 0.2 μm CMOS process noise: 260 e⁻ (+130 e⁻/pF) expected signal: 20000 e

8 channel Front-End ASIC

- Tpeak ≈ 60 ns
- Cdet up to 100pF
- switched gain: ~2fC <Qin<10 pC
- RC and FET feedback

8 channel 10-bit ADC ASIC

- 1.5 bit pipeline architecture
- 25 Ms/s (9.7 ENOB)
- Power: ~1.2mW/chan/MHz
- Power pulsing embedded

Data concentrator Xilinx Spartan 3E

4 pairs of Front-end + ADC

LumiCal / BeamCal sensors

Test-beam Setup

DAQ PC

USB

Trigger Logic Unit

- 50x10⁶ events recorded
- different areas of the sensor
- different FE settings
- data with FE and external ADC

October 24, 2012

LCWS Arlington

32 channels fully equipped (Sensor + Front-end + ADC)

- Signal handshaking with Trigger Logic Unit (TLU)
- ADC Clock source
 - Internal (asynchronous with beam operation) testbeam & CLIC mode
 - External (beam clock used to synchronize with beam) ILC mode
 - ADC sampling rate is up to 20 Ms/s (6.4 Gbps)

Example signal:
Signal digitized with
ADC ASIC (red) and
external ADC (blue)

Comparison of the amplitude measured with the ADC ASIC and a CAEN 500 Ms/s flash ADC

S/N ~ 22 (RC feedback & FET feedback)

Gain vs. channel

More Results

 σ_{PED} as a function of the pad area

Signal as a function of the voltage, test beam (GaAs)

Signal as a function of the voltage, lab measurement

Multiparticle crossing

Common mode noise

October 24, 2012 LCWS Arlington 15

Application of signal de-convolution

- Reduction of a long CR-RC pulse to 1 or 2 non-zero samples
- Pile-up resolving

October 24, 2012

LCWS Arlington

Track reconstruction using the telescope

Signal amplitude on neighbour and between pads

October 24, 2012

LCWS Arlington

Reconstruction of the 2 D shower shape

October 24, 2012 LCWS Arlington 18

Under development – calorimeter prototype

- 30 sensor layers and tungsten planes
- Precise positioning (50 μm)of sensor and absorber planes, very small clearance (compact calorimeter)

ADC ASIC prototype (130 nm IBM)

- 8 channels 10 bit SAR ADC
- Fully differential
- Sampling frequency 40 MHz

- After detailed design studies, sensors, FE and ADC ASICs are designed, tested and produced
- FE and ADC ASICs are attached to sensor prototypes (both BeamCal and LumiCal sensors) to form a fully operational sensor plane (32 channels connected)
- Performance studies are done in a test-beam
 - Stable operation with S/N ~ 20 (MIPs)
 - Small (~10%) loss of signal in the gaps
 - First estimate of a shower profile
- Ongoing work towards a prototype calorimeter with improved FE and ADC ASICs

Backup

Mechanical Frame

First machined permaglass frame

Sensor position between the two tungsten plates is not important

tungsten absorber plate inserted

Sensor plane

October 24, 2012

LCWS Arlington

New ASIC prototypes

Future ASICs will be designed and produced in 130 nm IBM technology (AGH-UST Cracow) faster, lower power consumption, radiation hard

- 10 bit SAR ADC (submitted
- in February 2012)
 - 1-2 mW at 40 Ms/s
 - 150 μm pitch
- new FE ASIC, improved ADC (submission in May)
 - Charge sensitive, PZC
 - Gain 0.15mV/fC and 15 mV/fC (switchable)
 - Peaking time 25-100 ns variable
 - 2 mW/channel
- Multichannel version in 2013

CLIC Electronics (proposal)

Triggerless time and amplitude reconstruction using asynchronous deconvolution or a gated integrator

With a peaking time of 60 ns and S/N = 20 a time resolution Of < 2ns was obtained (simulation and test with dedicated hardware.

More detailed physics background simulations needed!

October 24, 2012 LCWS Arlington 24

Laser Alignment and DAQ

Alignment Concept (INPAS Cracow)

- Reference for position monitoring QD0
- Laser beams and sensors between QDO and LumiCal
- Laser beams between both LumiCal

DAQ (INP and TAU)

- Follows the ILD standard (Calice, LCTPC)
- 4 Detector Interface units are ordered
- 1 Link Data Aggregator under test
- Concept not yet finished

Irradiation Studies (Plan)

Radiation Damage Study Facility (Santa Cruz)

will allow performing radiation hardness studies under more realistic conditions, e.g. considering also the hadronic component in electromagnetic showers;

Detector Design Studies, 500 GeV

Design studies, background, systematic effects for 500 GeV advanced

Published in JINST

Systematics of luminosity measurement at 500GeV

inst	Managed III () 21 to 1
	PUBLISHED BY IOP PUBLISHING FOR SISSA
	RECEIVED: September 15, 2010

	ACCEPTED September 15, 201
	ACCEPTED: November 12, 2016 PUBLISHED: December 7, 2016
Orward in	7, 2010

Forward instrumentation for ILC detectors

H. Abramowicz, A. Abusleme, K. Afanaciev, J. Aguilar, P. Ambalathankandy, P. Bambade, M. Bergholz, J. I. Bozovic-Jelisavcic, E. Castro, G. Chelkov, C. Coca, W. Daniluk, A. Dragone, L. Dumitru, K. Elsener, I. Emeliantchik, A. Irituowski, M. Gostkin, C. Grah, J. G. Grzelak, J. G. Haller, H. Henschel, S. Kulis, M. Idzik, K. Ito, T. Jovin, E. Kielar, J. Kotula, J. Z. Krumstein, O. Novgorodova, J. M. Ohlerich, J. A. Levy, A. Moszczynski, J. U. Nauenberg, A. Olshevski, M. Pandurovic, B. Pawlik, D. Przyborowski, K. Oliwa, J. A. Sailer, R. Schmidt, J. B. Schumm, S. Schuwalow, I. Smiljanic, K. Swientek, J. Takubo, E. Teodorescu, W. Wierba, J. H. Yamamoto, L. Zawiejski, and J. Zhang.

ACCOUNT OF THE PART OF THE PAR

Source	Value	Uncertainty	Luminosity Uncertainty
σ_{θ}	$2.2{ imes}10^{-2}$ [mrad]	100%	1.6×10^{-4}
Δ_{θ}	3.2×10^{-3} [mrad]	100%	1.6×10^{-4}
$a_{\rm res}$	0.21	15%	10^{-4}
luminosity spectrum			10^{-3}
bunch sizes σ_x , σ_z ,	655 nm, 300 μm	5%	1.5×10^{-3}
two photon events	2.3×10^{-3}	40%	0.9×10^{-3}
energy scale	$400\mathrm{MeV}$	100%	10^{-3}
polarisation, e ⁻ , e ⁺	0.8, 0.6	0.0025	1.9×10^{-4}
total uncertainty			2.3×10^{-3}

^{* 100%=} Upper limit – the size of effect is taken as uncertainty

- Cylindrical sensor-tungsten sandwich calorimeter
- Small Moliere radius
- Finely segments
- FE ASICs positioned at the outer radius

Detector Design Studies, 3 TeV

Design of the forward region of a CLIC detector

Crossing angle 20 mrad

- BeamCal angular coverage 10 40 mrad
- LumiCal coverage 38 110 mrad
- 40 X₀ depth
- Optimised to minimise backscattered particles

Vorward Region Design, ILD

Vorward Region Design, ILD

ASICS

AGH-UST Cracow Readout board, 32 channels

- AMS 350 nm
- 20 Ms/s ADC
- External and self trigger
- Internal or 'beam' clock
- Data transfer via USB
- Power pulsing
- Handshaking with Trigger Logic Unit (TLU)
- Used in several beam-test ventures

4 pairs of front-end+ADC ASICs

Data concentrator Xilinx Spartan 3E

sensor connector