

why should there be new physics?

- hierarchy problem
 - stabilize the Higgs boson mass
 - biggest contribution from top quark loops
 - requires new particle with m < 1 TeV
 - could be vector-like quark or stop squark
- dark matter
 - the WIMP miracle
 - TeV mass, weakly interacting particle produces the correct relic density
 - could be lightest supersymmetric particle

what might it look like?

- possible phenomenologies
 - SUSY
 - solves hierarchy problem and provides dark matter candidate
 - jets, leptons, photons + large missing pT
 - extra dimensions
 - lower Planck scale
 - KK towers, black holes
 - little Higgs theories
 - push scale of new physics up
 - top quark and W boson partners
 - New/excited fermions
 - Leptoquarks
 - something completely different??

what might it look like?

A theorists view of the univers(es)

Meenakshi Narain – 2012

The Exotics Matrix

Given the diversity of signatures, a wide net needs to be cast

LHC

Data collected in 2011: ≈ 5fb⁻¹ of analyzable luminosity

2012: ≈ 17.5fb⁻¹ recorded and continuing....

Impressive Machine Performance!

(generated 2012-10-21 18:22 including fill 3204)

Event Pile-up issues:

- High luminosity comes at a cost: in 2012 already exceeding detector design capability for pile-up
- Presently: ~30 collisions on average /bunch-crossing

- Need to be mitigated at all stages:
 - Trigger, reconstruction of physics objects, isolation cuts, etc.
 - Data processing time

SUSY Searches

- Many powerful "inclusive" searches have been pursued
 - Searching in a broad spectrum of new physics scenarios main sensitivities to gluino/squark production

SUSY search strategies

- strongly produced spartners
 - cascade decays of squarks/gluinos to stable LSP
 - jets → large transverse energy + missing pT
 - possibly additional lepton(s) and/or photon(s)
- 3rd generation squarks
 - top and bottom quarks + missing pT

- W or Z bosons/leptons + missing pT
- RP violating SUSY
 - displaced vertex, heavy charged particles
- Final state signature based analyses

SUSY Search Interpretations

In context of a specific model

Predictive but universality constraints result in significant restrictions

on possible SUSY particle mass spectra

- Constrained MSSM (mSUGRA)
- Gauge-Mediated SUSY Breaking (GMSB)
- Anomaly-Mediated SUSY Breaking (AMSB)

Simplified Model Spectra:

- Focus on topology rather than the underlying physics model
- Limited set of particles; decays with less specific mass patterns and signatures
- The exclusions depends strongly on the LSP mass.
- Give acceptance x efficiency and cross-section limit
- Building blocks that can be used to generalize to a more complete 'model'-space
- Models proposed at: http://www.lhcnewphysics.org

jets+missing p_⊤ search

- very challenging due to large amount and wide range of backgrounds
- most sensitive search for strongly produced SUSY
- selection
 - 2-6 jets with pT>60 GeV
 - missing pT > 160 GeV
 - no leptons
 - cuts on $\Delta \phi$ (jet, missing pT), missing pT/Meff
- dominant backgrounds
 - W+jets, Z+jets, top quark production, multijets
- constrain backgrounds with data in control regions

jets+missing p_T search

- count number of events in signal regions defined by
 - $m_{eff} = \Sigma |p_T(jet)| + |missing p_T|, jet multiplicity$
- no significant excess over background expectations

95% limits in MSUGRA/cMSSM with $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$

ATLAS-CONF-2012-109

b-jets + missing p_T search

Wide sensitivity to both inclusive and 3rd generation signatures

- event selection
 - no isolated leptons/photons
 - ≥2 jets with pT>100 GeV
 - analysis variable $\alpha_T = E_T^{j2}/M_T^{j1j2}$
 - $-\alpha_{T}>0.55$
- bin in H_T and b-jet multiplicity

$$M_{\rm T} = \sqrt{\left(\sum_{i=1}^2 E_{\rm T}^{j_i}\right)^2 - \left(\sum_{i=1}^2 p_x^{j_i}\right)^2 - \left(\sum_{i=1}^2 p_y^{j_i}\right)^2}.$$

$$\alpha_{\rm T} = \frac{E_{\rm T}^{\rm j_2}}{M_{\rm T}}$$

b-jets + missing p_T search

Narain – 2012

b-jets + missing p_⊤ search

m(gluino) > 850 GeV for m(neutralino) = 50 GeV

15

constrained MSSM summary

Probing 1 TeV mass scale and beyond for squarks or gluinos 16

3rd generation squarks

- Natural SUSY
 - Light squarks and gluinos M ≤ 1 TeV excluded
 - Light stops needed
 - Dedicated searches for best sensitivity
 - multiple b-tags and ETmiss

Gluino-mediated

Direct Stop

17

gluino induced stop production

direct stop production

for
$$m_{\widetilde{t}} < m_t : \widetilde{t} \to b \widetilde{\chi}_1^{\pm} \quad \widetilde{\chi}_1^{\pm} \to W \widetilde{\chi}_1^{0}$$

$$\widetilde{\chi}_1^{\pm} \to W \widetilde{\chi}_1^0$$

arXiv:1208.4305 arXiv:1209.2102 arXiv:1208.1447 arXiv:1208.2590 arXiv:1209.4186

for $m_{\widetilde{t}} > m_t : \widetilde{t} \to t \widetilde{\chi}_1^0$

Exclude $300 \le m(\tilde{t}) \le 450 \text{ GeV for } m(\tilde{\chi}_1^0) \le 100 \text{ GeV}$

direct gaugino production

 if squarks and gluinos are too massive, direct gaugino production may dominate CMS PAS SUS-12-006

the big picture

coloured SUSY particles excluded up to ~1.5TeV third generation and electroweak SUSY particles probed up to ~300 GeV

Non SUSY exotic searches

- new bosons
 - gauge bosons (W', Z'), KK states
- new fermions
 - 4th generation, vector-like
- leptoquarks
- new dimensions
 - gravitons participate in particle interactions
- dark Matter
- something completely different

Meenakshi Narain – 2012

new bosons

- may appear as resonances: "Bump Hunting"
 - dileptons
 - dijets
 - diphotons
 - ttbar

Meenakshi Narain – 2012

dilepton resonances

Narain – 2012

dilepton resonances: Z'/G_{KK}

- many BSM models predict narrow II resonances
 - Z' with sm like couplings (Γ =30 GeV @ M=1 TeV)
 - Z' of grand unified theories (Γ =6 GeV @ M=1 TeV)

some excitement in 2011 data

dilepton resonances: Z'/G

8 TeV 6/fb

- event selection
 - isolated e: pT > 35 GeV
 - Isolated μ : pT > 45 GeV

- Background
 - prompt leptons
 - · based on MC
 - verify data-MC agreement in eµ
 - Jets
 - · based on data
- No sign of excess at high mass especially at 1 TeV in the 2012 data

dilepton resonances: Z'

Search for narrow [4-14% $\sigma(M)/M$] resonance predicted in many models.

CMS limits on

$$R_{\sigma} = \frac{\sigma(Z' \to ll)}{\sigma(Z \to ll)}$$

SSM: $M_{7}^{-} > 2.59 \text{ TeV}$

GUTs: $M_{7}^{,} > 2.26 \text{ TeV}$

SSM $M_{7}^{-} > 2.49 \text{ TeV}$ GUTs: $M_{7}^{-} > 2.09 \text{ TeV}$

ATLAS-CONF 2012-129

Narain – 2012

CMS PAS EXO-12-015

dijet resonances

- Resonances predicted in many BSM models
 - String resonances
 - (Regge excitations of quarks and gluons) S → q g
 - Scalar diquarks (E6 GUT) D $ightarrow qq ext{ or } \overline{q}\overline{q}$
 - Excited quarks (compositeness) q* → q g
 - Axigluons (chiral symmetry group) A $\rightarrow q\overline{q}$
 - Color-octet (large symmetry group)
 - colorons and scalars $C \rightarrow q\overline{q}$
 - Heavy gauge bosons (new gauge symmetries)
 - W' $\rightarrow q\overline{q}$ and Z' $\rightarrow q\overline{q}$
 - Randall-Sundrum gravitons (extra dimensions)
 - G $\rightarrow q\overline{q}$ and g g

CMS Experiment at LHC, CERN

Data recorded: Sat May 26 13:25:29 2012 CEST

Run/Event: 195016 / 425646417

Lumi section: 384

dijet resonances

dijet resonances

- "wide jets"
 - absorb jets within ΔR < 1.1 into leading two jets

 cluster final state radiation for better gg resonance

fit background to

$$\frac{p_0(1-x)^{p_1}}{x^{p_2+p_3\ln(x)}}$$
 where $x=mjj/\sqrt{s}$

dijet resonances @8 TeV

- upper limits on σ x B x A
 - Bayesian statistics
 - signal shapes for
 - qq resonances
 - qg resonances
 - gg resonances

dijet resonances

ATLAS

m(q*)>3.66 TeV @ 95% CL

CMS

- Classiy in 0, 1, 2 btag categories.
- Upper limits on the production of narrow resonances are set as a function of the bb jet fraction f_{bb}

- Many models of new physics have large couplings to the top quark and prefer the 3rd generation
- benchmark models
 - leptophobic topcolor Z'
 - (Harris et al., hep-ph/9911288)
 - KK gluon
 - (Lillie et al., PRD 76 (2007) 115016)
- As we probe higher and higher mass scales, the phenomenology of the top quarks produced in collision events changes
 - Boosted regime

- Search in the all hadronic decay channel for the tops
- Both top quarks produced by the Z' decay hadronically
- Two top candidate types:

hadronic W-subjet

top-tagging:

"type 2" top candidate, formed by adding the closest jet to the "type 2" W candidate.

data compatible with background, no excess

arXiv:1204.2488 CMS EXO-11-006

Exclude KK-Gluons 0.7<M<1.5 TeV

KK gluon mass [GeV]

 Using lepton+jets events. For m(tt)>1 TeV the decay products of hadronic t quark decay are not resolved

Narain – 2012

new fermions

- 4th generation is straightforward extension of sm
 - constraints from experiment
 - $m_{V'} > \frac{1}{2}M_Z$
 - $m_{t'} > 358 \text{ GeV}$
 - $m_{b'} > 385 \text{ GeV}$
 - $|m_t' m_b'| < M_W$
 - decay modes
 - $t' \rightarrow bW$
 - $b' \rightarrow tW \rightarrow bWW$

- 4th generation would
 - enhance production cross section of a Higgs boson
 - make ewk measurements consistent with larger m_H
- vector-like fermions
 - avoid sm constraints

t'→bW

M(t')>404 GeV ATLAS >560 GeV CMS

ATLAS PRL 108 (2012) 261802 CMS PAS EXO-11-099

0000000

b' →tW

same sign leptons

m(b')>670 GeV ATLAS >611 GeV CMS

ATLAS-CONF-2012-130 CMS arXiv:1204.1088

vector-like quarks

 not subject to sm constraints, eg on FCNC do not have to couple to Higgs boson predicted e.g. by little Higgs models can decay to bW, tZ, tH

- assume 100% Q->tZ
 - Lepton+jets and at least one bjet
 - →m(Q)>625 GeV
- Assume 100% Q->tW
 - →m(Q)>675 GeV

CMS PAS B2G-12-004

- 2 isolated leptons 60<mll<120 GeV
- reconstruct bZ mass spectrum
- →m(b')>550 GeV

CMS PAS EXO-11-066

monojets/monophotons (ISR)

- gravitons in extra dimension models
- dark matter particles WIMPs (χ)
 - kinematically accessible
 - produced via exchange of particle with mass M
 - contact interaction with scale Λ =M/ $\sqrt{g_{\chi}g_{q}}$
 - assume Dirac fermions
 - relate production at LHC to χ nucleon interactions
 - Probing the same effective operators as in direct detection
 - High sensitivity to spin-dependent couplings
 - Extends direct detection below 5 GeV
- Background
 - Z(vv) or W(lv) + jets
 - Non-collision backgrounds noise, cosmics, beam-related)

monojets/monophotons

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

limits on Dark Matter

LHC results complement direct detection experiments

exceed sensitivity of cryogenic searches for DM spin dependent DM couplings Add to reach for low DM masses, M<10 GeV, for spin independent couplings

Narain – 2012

summary of limits from CMS

summary of limits from ATLAS

summary

- where is the new physics?
 - no colored SUSY particles (first generations) below O(1 TeV), for a light LSP
 - no "natural" SUSY at a few hundred GeV of 3rd generation spartners
 - no exotic heavy objects below 2-3 TeV
 - Data is challenging many BSM models
- this is an extraordinary time in science:
 - LHC results are already changing our understanding of nature at a fundamental level.
 - We hope that the results from the 2012 dataset (> 25
 fb-1) will bring more discoveries
 - and a clearer picture will emerge

summary

- however
 - there is still a lot of room to be searched,
- we are merely at the beginning of the exploration of the TeV scale at the LHC
- 14 TeV collisions
 - much larger reach!

New Physics Unleashed?

The Game:

Torus Lab is the world's largest particle collider, unleashing new exotic particles unknown to science.

Now the lab is out of control! The scientists must input the self-destruct codes or the unstable particles will endanger the world.

47

and many thanks to my colleagues in the ATLAS and CMS collaboration for the material used in this presentation