

Status and plans of the CALICE AHCAL

Oskar Hartbrich for the CALICE Collaboration

LCWS 2013, November 13th 2013

CALICE AHCAL

- CALICE Analog Hadronic CALorimeter (AHCAL)
- Based on Scintillator tiles (3*3cm²)
 - Individual Silicon Photomultiplier (SiPM) per cell
- 1m³ physics prototype used in different testbeams 2006-2012

AHCAL Performance

Performance of concept validated with prototype
 → Various published results

The AHCAL Engineering Prototype

The HCAL Base Unit (HBU)

- 4 ASICs, 144 channels per PCB
- Designed within ILD constraints
 - Extra thin PCB, cutouts for ASICs

- SPIROC2b frontend ASIC (OMEGA, France)
 - Specifically designed for AHCAL/ScECAL
 - Full self triggered operation
 - Hitwise time stamping (<1ns resolution)
 - Power pulsing capable
- See next talk (A. Ebrahimi) about electronics

The road to a full prototype

Operation modes to be tested:

Single boards in the lab

Single boards in testbeam

- Multiple boards in one slab (1D extension)
- Multiple HBUs in one layer (2D extension)
- Multiple layers in one detector (3D extension)

Full Slab Test

- Full slab assembled in lab
 - 6 serial HBUs
- Readout, calibration, power pulsing tests
- Excellent data quality via 2.2m signal path

1D extension established

CERN Layer

- 2012 CERN hadron beam
 - ◆ 4 HBUs (72*72cm²), 576 channels
- Measurement of hadron shower hit timings
 - Operation in last layer of CALICE W-DHCAL
 - Parasitic data taking
- Fully autotriggered, low beam rates (20-2000Hz)
 - Stable operation
 - \rightarrow 2D extension established

CERN Layer: current results

- Various runs: 180GeV Muons, 50-180GeV Pions
- Critical threshold setup
 - MIP response equalised channelwise
 - → Single threshold per chip
- Hit timing needs precise TDC calibration
 - Work in progress
 - ~2ns time resolution for electronics only

Towards a small HBU stack

Intermediate goal: Small stack for DESY electron beam

- System tests
- Performance validation
- Calibration strategy
- ILD Mechanics test
- → Flexible test bench for tile/SiPM options

- ILD absorber prototype (Fe) for EM showers
 - Permanent installation in DESY TB22
- Mechanics in final ILD dimensions & tolerances

Multilayer Test Beam

- Operation of up to 5 synchronous layers
 - Parallel runs with ScECAL layers
- Fully self-triggered
- MIPs and showers taken
 - 1-5 GeV positrons

Multilayer MIP calibration

- MIP calibration through 4 layers
- Noise suppression
 - Online: External trigger validation
 - Offline: Hit timing correlations
- 0.1MIP threshold
 - Minimum noise fraction
 - Minimum signal loss
- Multi layer operation:

Fiberless Tiles

- Optimising tile design for mass production
- SiPMs now blue sensitive, no WLS fiber needed
 - Need to ensure uniformity without fiber
- Idea: Dimple around SiPM for uniform response
- Top mounted SiPM:
 - NIU: Surface mounted SiPMs
 - Megatile for assembly in larger units
- Side mounted SiPM:
 - MPI: first concepts, machined dimple
 - ITEP: injection moulded fiberless tiles
 - ◆ UHH: improved shape → easier machining

UHH Tiles

- Machined tiles, individually wrapped
 - Homogenous tile response across area
- New commercial SiPM (KETEK)
 - Lower device by device variation (gain, bias, etc.)
- First batch of >40 tiles characterised
 - Full bias/temperature scan w/ particles
- ~300 tiles assembled
 - Mass characterization at KIP Heidelberg
- Material for 1200 tiles available (8 HBUs)
- Process geared towards automation
 - Laser cut reflective foil
 - Tile wrapping

Testbeam plans

Short term:

- 5 equipped boards available, 4+ to be equipped with UHH tiles
 - EM performance in DESY beam
 - 4 weeks beam time end of 2013

Medium term:

- Timed hadron shower imaging
 - ~10 single HBU layers (interaction finder)
 - ~2 full (2*2 HBUs) layers

Long term:

- Full 1m³ technical prototype
 - → ~40 full layers
 - Demonstrate full integration, production automation

Summary

- The AHCAL is a scintillator-SiPM based concept for a hadronic calorimeter
 - Physics performance has been proven in various testbeam campaigns
- Now developing a prototype that is scalable to a full detector
 - Mechanical integration within ILD constraints is well advanced
 - The first multilayer setups have and will be tested in the DESY beams
- Various options for scintillator tiles under development
 - Focus on scalability of production and assembly
- Strong synergies with Scintillator ECAL effort

Backup

NIU Megatile

- NIU concept: Surface mounted SiPMs
 - SiPMs mounted on top of tile
 - Concave dimple in tile for uniformity
- Megatile scintillator
 - ◆ 18*18cm² divided into 3*3cm² cells
 - Optical isolation by white epoxy
- Easy assembly
 - SiPMs assembled like standard components
 - Scintillator is equipped in larger components
- Modified HBU designed and produced at DESY
 - First calibration spectra obtained by NIU

Mass Tile Characterisation

- Studies for automated mass tile characterisation by Uni Heidelberg
- Goal: Simultaneous full characterisation of 12 tiles at once, 216 tiles per run
- Readout by KlauS ASIC
- System commissioning and test runs with first 12 UHH tiles

Mass Tile Assembly

Studies by Uni Mainz:

- Mechanical connection tile

 → HBU
 - Detailed study of glueing tiles to HBU as an alternative to alignment pins
- ◆ Electric connection tile

 HBU
 - Soldering SiPMs to the HBU is fastest with commercial wave soldering
 - Needs to be reflected in PCB design

Mechanical Integration – Absorbers

Full layer test stack

- 4 layers of ILD HCAL absorber
 - Largest plates in ILD stack
 - Full layer dimensions (6*3 HBUs)
- Heat dissipation and power pulsing

Half octant test stack

- 1/6 HCAL segment (1 HBU depth)
 - 2pcs available, stackable
- Current and future testbeam setups
- Integration of infrastructure
 - Power supplies
 - Cooling systems
- Stress tests (earthquake safety!)

Electronic Integration - HBU

- 4 ASICs, 144 channels per PCB
 - SPIROC chip family by Omega, France
 - Full digitisation on chip
 - <1ns time stamping</p>
 - Power pulsing
 - Separate developments for analog part by Uni Heidelberg: KlauS ASIC
- One Central Interface Board (CIB) per layer
 - Power board
 - Calibration and trigger controller
 - DAQ interface
- 5 HBUs equipped and calibrated in DESY electron beam
 - 8 fresh HBUs to be equipped with tiles

HBU

CIB

Multilayer Setup

- At the moment: no hadron beams available
- Start in DESY beam (EM showers)
 - Using available ILD prototype absorber
- Synchronous operation of multiple layers requires DAQ rework
 - Single layer operated via USB and Labview
 - Local clock generated on CIB
 - Multilayer needs central clock generation
 - Needs distribution of fast signals
 - Hardware from Uni Mainz
 - First step: data via USB, fast signals via HDMI
 - Next step: Data also via HDMI, dedicated data aggregation hardware
 - New DAQ software
 - Still Labview, but modular and faster

