Electrons in the AHCAL

A First Look at FNAL 2009

Frank Simon, Philipp Klenze MPI for Physics & Excellence Cluster 'Universe' Munich, Germany

CALICE Collaboration Meeting, Arlington, TX, USA, March 2010

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Overview

- Motivation and Analysis Technique
- First Results
 - Shower Profiles
 - Noise Issues
 - Linearity and Resolution
- Summary

Motivation

- Electromagnetic probes are our best tool to study the quality of our simulations, and our detector understanding!
- FNAL 2009 Data adds points at low energy
- In this talk: FNAL data from 2 GeV to 20 GeV, in addition CERN 2007 data from 10 GeV to 50 GeV as cross-check
- Analysis cuts:
 - Cherenkov not explicitly used, was in the trigger for some runs
 - Cuts on the TCMT to reject muons
 - some clearly noisy cells excluded (both in data and simulations)
 - Disclaimer: No in-depth study of cuts yet, still at the beginning...

Shower Profiles

• Longitudinal profile, compared to simulated electrons and pions

- Pion contribution estimated to be small (as expected)
- Some discrepancy in the details of the profiles, but overall not so bad agreement: After all, this is a very fist try!

Shower Profile and Shower Maximum

 Shower maximum extracted from a Gaussian fit around the peak of the longitudinal profile

- expected logarithmic behavior
- slight discrepancy between FNAL data and simulations: simulated showers seem to peak and fall of earlier than those in data

Excellence Cluste

Linearity: First Shot

• Reconstructed energy: Complete energy in the HCAL

Fit: Straight line through all data points up to 20 GeV, no offset at 0 Slope: 42.3 MIP/GeV

Linearity: First Shot

Reconstructed energy: Complete energy in the HCAL

Fit: Straight line through all data points up to 20 GeV, no offset at 0 Slope: 42.3 MIP/GeV

- Problems at low energy: Reconstructed
- energy in data is too high

Noise in Electron Runs

- Measured from random trigger events
 - ~ 9 MIP mean noise contribution, corresponds to 200 MeV

ЪШ

Noise in Electron Runs

- Measured from random trigger events
 - ~ 9 MIP mean noise contribution, corresponds to 200 MeV

Reducing noise:

- Introduce a smaller fiducial volume (em-showers are compact!)
 - Use only first 19 layers, reduced lateral integration volume

FNAL 2009 Electrons in the AHCAL CALICE Collaboration Meeting, Arlington, TX, March 2010

Noise in Electron Runs

- Measured from random trigger events
 - ~ 9 MIP mean noise contribution, corresponds to 200 MeV

Reducing noise:

energy -20 GeV

CALICE work in progess

30

25

20

15

10

- Introduce a smaller fiducial volume (em-showers are compact!)
 - Use only first 19 layers, reduced lateral integration volume

5

10

15

20

FNAL 2009 Electrons in the AHCAL CALICE Collaboration Meeting, Arlington, TX, March 2010

30

25

Excellence Cluster

• Noise reduction solves linearity issue in low energy data

• Noise reduction solves linearity issue in low energy data

But:

downward trend at higher

energies in FNAL:

could be a calibration issue need a different MIP-> GeV

factor?

• Noise reduction solves linearity issue in low energy data

But:

downward trend at higher energies in FNAL: could be a calibration issue need a different MIP-> GeV factor?

massive disagreement of simulations with data, too low response for low energy no idea yet - is the issue data or MC?

• Noise reduction solves linearity issue in low energy data

But:

downward trend at higher energies in FNAL: could be a calibration issue need a different MIP-> GeV factor?

massive disagreement of simulations with data, too low response for low energy no idea yet - is the issue data or MC?

- Simulation clearly still needs a lot of work
- Understanding the geometry? Link to discrepancy in shower maximum and profiles? MC showers seem to start a bit earlier than seen in the data...

Excellence

FNAL 2009 Electrons in the AHCAL CALICE Collaboration Meeting, Arlington, TX, March 2010

Frank Simon (frank.simon@universe-cluster.de)

FNAL 2009 Electrons in the AHCAL CALICE Collaboration Meeting, Arlington, TX, March 2010

Frank Simon (frank.simon@universe-cluster.de)

Excellence Cluster

FNAL 2009 Electrons in the AHCAL CALICE Collaboration Meeting, Arlington, TX, March 2010

10 Excellence Cluster

ТШП

FNAL 2009 Electrons in the AHCAL CALICE Collaboration Meeting, Arlington, TX, March 2010

10 Excellence Cluster

TUT

Energy Resolution

• With noise reduction applied

Summary

- First look at FNAL electromagnetic data (taken May 2009)
- Shower profile decent, but not perfect match with simulations
- Good linearity after introducing noise rejection by reducing the integration volume
 - But: Serious discrepancies between data and simulations
- Energy resolution encouraging: Already quite close to stochastic term obtained from CERN data

Summary

- First look at FNAL electromagnetic data (taken May 2009)
- Shower profile decent, but not perfect match with simulations
- Good linearity after introducing noise rejection by reducing the integration volume
 - But: Serious discrepancies between data and simulations
- Energy resolution encouraging: Already quite close to stochastic term obtained from CERN data

Next:

Need to work on understanding of the data and: understanding and potentially improving the simulation

