# PFA (Particle Flow Algorithm) at University of Iowa

Tae Jeong Kim Mat Charles Usha Mallik (U. of Iowa)

## Outline

- 1. PFA overview
  - Photon, Electron and Muon ID
  - Track and Seed cluster
  - Building charged shower
  - Reconstructing particles
- 2. Progress since Boulder workshop
- 3. Muon ID study

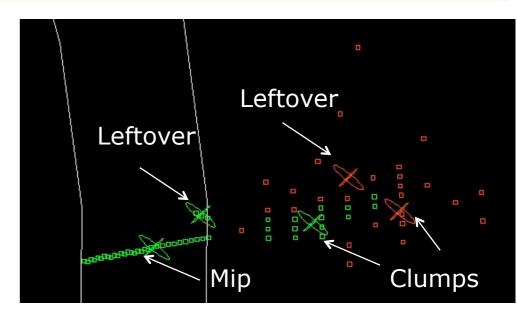
### Photon ID & Electron ID & Muon ID

- Initial "photon" cluster obtained by Ron's Photon Finder
- Break down these into three categories
  - No track matched : Pure photon
  - Track matched & E/p ≈ 1 : Electron
  - Other: consider possibility of overlap as hadronic shower.
- Muon
  - Find MIP direction in Muon detector and match with the direction of extrapolated track from tracker.
  - Detail later
- These hits do not participate in building clusters except for the overlaps.

## DirectedTree Cluster

#### Next step is running DTree clustering package

| Ecal Digi Hits(Barrel, Endcap)            |                                |                                | Hcal Digi Hits (Barrel, Endcap) |                                |                                |  |  |  |  |
|-------------------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|--|--|--|--|
| Photon,<br>Electron,<br>Muon              | DTree cluster<br>(Ecal Barrel) | DTree cluster<br>(Ecal Endcap) | Muon                            | DTree cluster<br>(Hcal Barrel) | DTree cluster<br>(Hcal Endcap) |  |  |  |  |
| MIPs A continuous sequence of single hits |                                |                                |                                 |                                |                                |  |  |  |  |


DTree cluster

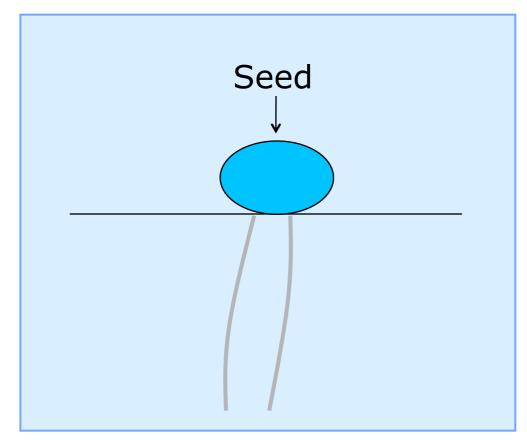
Clumps Group of hits with high density

Blocks No structure, if(>= 20hits in ECal, >=15 hits in HCal)

Leftover No structure, small number of hits (Share with others)

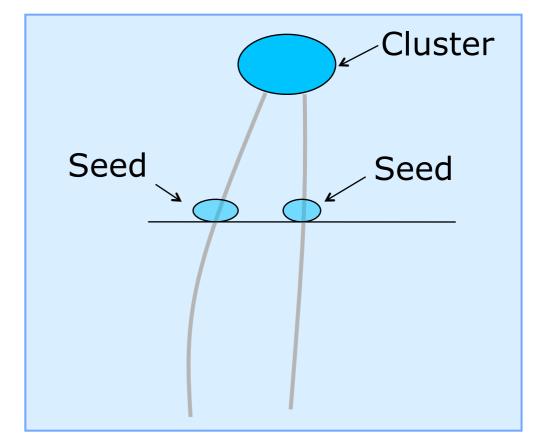
• Leakage Some of high energy shower escapes Hcal, reaching Muon Detector. Adding the energy by using Muon Endcap as tail catcher give better resolution. (Currently not using Barrel)




# Track and Seed

- For production version Full propagation track is used
  - Cheater track for development
- Of course the resolution is better for cheater track.

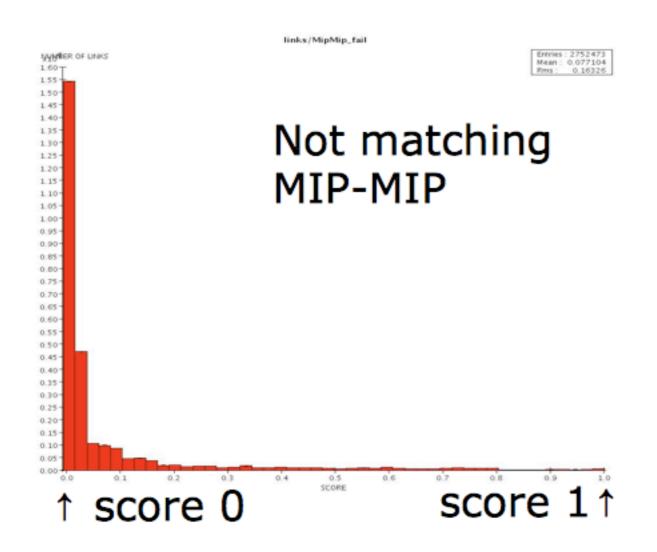
- Start building shower from seed
- Seed: Cluster directly connected to extrapolated track.
- Each track has one seed typically.
- Handle special cases
  - Track doesn't reach calorimeter
  - Track reach calorimeter but no seed found

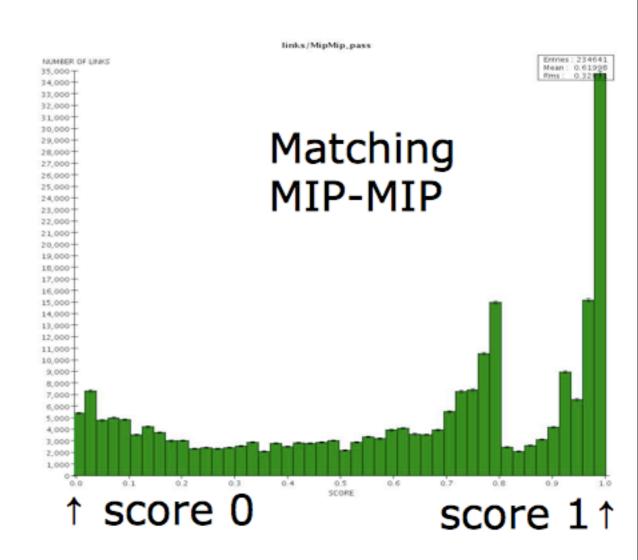

# Merging track case

#### Case 1

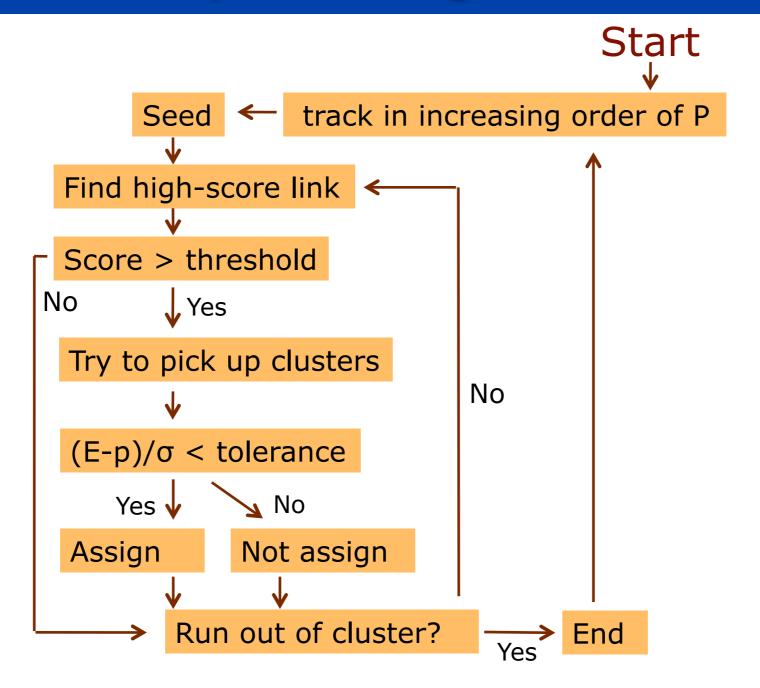


Make "multiple track" for E/p check. Written out as 2 separate charged particles in the end.


#### Case 2




Going into same cluster leading to connecting seed. Put it together for E/p check


# Scoring

- We assigned "Score" to the link based on how closely two clusters are related.
- It is based on the geometric quantities.
- Score ranges from 0 to 1





# Finally building shower



If incomplete track(E<<p), adjust tolerance/threshold and go back to the whole iterating.

# Fixing Mistakes

#### 1. Override

Find high score link to the unassigned cluster. Check if the corresponding cluster has track matched. Add this cluster as long as E/p is low.

## 2. Reassignment

Make unassigned cluster list
Get an angle for each cluster with track
Veto if score < 0.7
Add clusters in angular order
Add clusters subject to tight E/p upper limit

Veto if the cluster is too huge (E>>p)

## Neutral hadron shower

- The remaining cluster after assigning as charged and photon cluster are going to be neutral hadron clusters.
- Make neutral shower by looping over unassigned clusters in the same way we did for charged clusters.(But neither E/p cut or any adjusting threshold for score)
- Each set of shower clusters becomes one neutral particle.
- If the whole shower is deposited in ECAL, treat it as photon.

## Reconstruct Particle

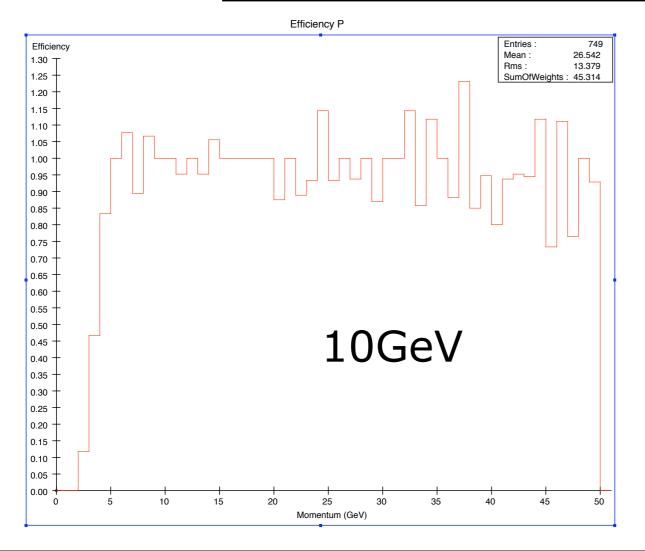
- Photon has one cluster and no mass. 4-vector is based on position and energy of the cluster.
- **Electron** has one cluster and one track. 4-vector is based on the track momentum and electron mass.
- **Muon** has one cluster and one track. 4-vector is based on the track momentum and muon mass.
- Charged particle is reconstructed with 4-vector based on the track momentum and pion mass.
- **Neutral particle** is reconstructed with 4-vector based on the position and energy of the cluster and kaon mass.

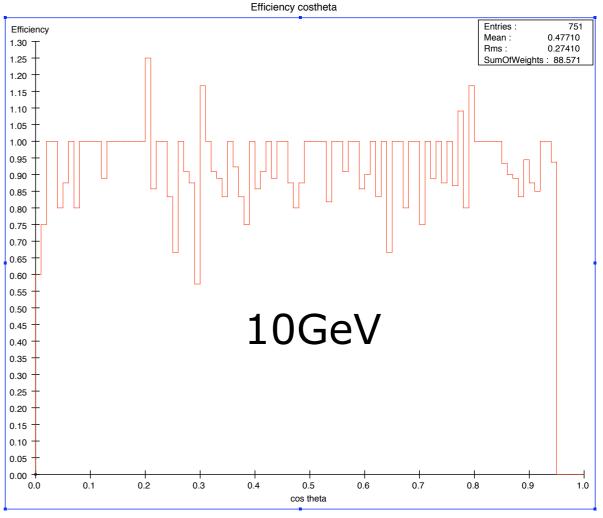
# Update since Boulder

- Rearrangement by Mat
  - Take photon, electron and muon out of the main code.
  - Easy to maintain, code simpler
  - Reduce mistake in bookkeeping
- Muon ID study
  - Identified as Muon, no need to build shower.
     (reduce confusion from misidentification as hadron)
  - Focus on high momentum track. (reaching Muon detector)

# Muon ID Study

- How to identify high momentum muon (Simple way)
  - Using Digi hits (Endcap and Barrel)
  - Compare the direction of MIP in Muon detector and tangent direction of extrapolated track at the surface of calorimeter.

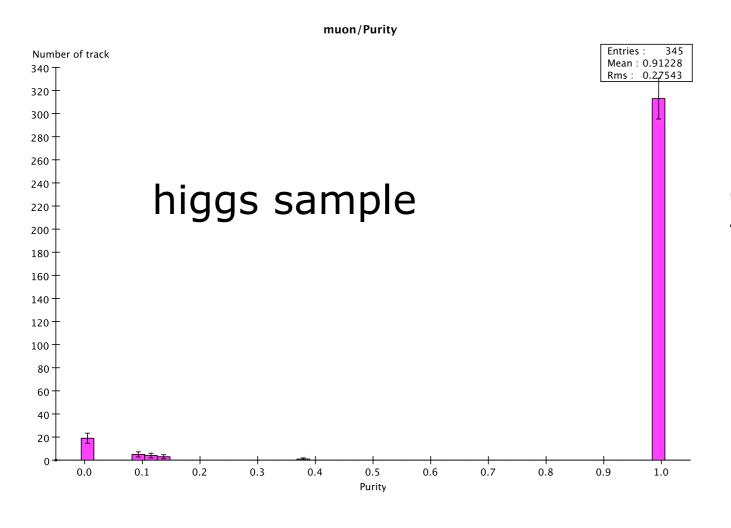

#### Requirement


- Muon MIP quality cut in the Muon detector. (at least 3 isolated hits)
- Muon is supposed to behave like MIP going through out the detector without showering. We require a MIP-like behavior through the Ecal and the early layers in Hcal (allowing missing hits in the last 10 layers of Hcal).

# Muon Efficiency

Single Muon 1000 events, preselection :  $cos(\theta) < 0.95$ 

| Р     | Cheater track | Full track | MC  |  |
|-------|---------------|------------|-----|--|
| 1GeV  | 0             | 0          | 816 |  |
| 2GeV  | 0             | 0          | 816 |  |
| 5GeV  | 801(98%)      | 801(98%)   | 816 |  |
| 10GeV | 801(98%)      | 803(98%)   | 816 |  |






## Muon Efficiency

Preselection:  $cos(\theta) < 0.95$ , P > 2GeV

| Sample         | Cheater track |            | Full track |            | NAC  |
|----------------|---------------|------------|------------|------------|------|
| (1000events)   | Purity        | Efficiency | Purity     | Efficiency | MC   |
| ttbar (500GeV) | 513(88%)      | 583(51%)   | 476(84%)   | 565(49%)   | 1143 |
| higgs (250GeV) | 327(93%)      | 350(57%)   | 313(91%)   | 345(56%)   | 615  |



#### Purity

= number of hits from muon divided by number of hits from tracks

# Future Plan

- Continue to improve resolution
- Low momentum muon identification
- Energy dependent optimization for scoring
- Use Muon Barrel system as tail catcher
- Consider Energy Flow Algorithm for high energy jets.