AS Sources Homework

J. C. Sheppard

Rev. 0: November 12, 2011

- 1. Space Charge Derivation: Derive the space charge equations on slides 30 and 31. Show that the SC forces go to zero as γ gets large.
- 2. Derive the Spin Rotation equations on slide 111:

$$\theta_{Bend} = \frac{B(kG)L(m)}{33.359E(GeV)} rad$$
 (14')

$$\theta_{prec} = \frac{E(GeV)}{0.44065} \theta_{Bend} \tag{15'}$$

$$\phi_{rot} = \frac{B(kG)L(m)}{33.359E(GeV)} \tag{16'}$$

$$\theta_{prec_{\mathcal{E}}} = \left[\left(\frac{\gamma^2 - 1}{\gamma} \right) \left(\frac{g}{2} \right) - \gamma \right] \theta_{Bend_{\mathcal{E}}}$$
 (22)

The Lorentz force is given by Jackson (11.168) in cgs units as

$$\frac{d\vec{\beta}}{dt} = \frac{e}{\gamma mc} [\vec{\mathcal{E}} + \vec{\beta} \times \vec{B} - \vec{\beta} (\vec{\beta} \cdot \vec{B})] \qquad \{\text{cgs}\}$$
 (1)

wherein vectors are indicated by an arrow, $\vec{\mathcal{E}}$ is the electric field, \vec{B} the magnetic field, and $\vec{\beta} = \frac{\vec{v}}{c}$. Convert (1) to MKS by replacing \vec{B} by $c\vec{B}$; also multiply both sides by c to convert $\vec{\beta}$ to \vec{v} and change e to q for aesthics

$$\frac{d\vec{v}}{dt} = \frac{q}{\gamma mc} [c\vec{\mathcal{E}} + \vec{v} \times \vec{B} - \vec{\beta}(\vec{v} \cdot \vec{B})]. \quad \{MKS\}$$
 (2)

The BMT equation is given by Jackson (11.170) in cgs units as

$$\frac{d\vec{s}}{dt} = \frac{e}{mc} \vec{s} \times \left[\left(\frac{g}{2} - 1 + \frac{1}{\gamma} \right) \vec{B} - \left(\frac{g}{2} - 1 \right) \frac{\gamma}{\gamma + 1} \vec{\beta} (\vec{\beta} \bullet \vec{B}) - \left(\frac{g}{2} - \frac{\gamma}{\gamma + 1} \right) \vec{\beta} \times \vec{\mathcal{E}} \right] . \{ \text{cgs} \}$$
 (3)

Convert (3) to MKS by replacing B by cB and change e to q

$$\frac{d\vec{s}}{dt} = \frac{q}{m} \vec{s} \times \left[\left(\frac{g}{2} - 1 + \frac{1}{\gamma} \right) \vec{B} - \left(\frac{g}{2} - 1 \right) \frac{\gamma}{\gamma + 1} \vec{\beta} (\vec{\beta} \bullet \vec{B}) - \left(\frac{g}{2} - \frac{\gamma}{\gamma + 1} \right) \frac{\vec{\beta} \times \vec{\mathcal{E}}}{c} \right]. \text{ (4)}$$

For c=2.998x10⁸ m/s, mc²=0.511 MeV, $(\frac{g}{2}-1) = 1.16x10^{-3}$, BL in units of kG-m, and E in GeV (14)-(16) become

- 3. Laser Power: Assuming QE = 2e-5 for a copper cathode, how much peak and average laser power is required to generate 250pC of charge at 120 Hz in the LCLS? How much laser energy is absorbed within a depth of one wavelength of the surface?
- 4. What is the underlying physics for Moeller scattering? How does Moeller scattering work?
- 5. Extra Credit: Thermal Diffusion, slides 119-121: What is the energy distribution as a function of time in a copper cathode at t=2ps for an incident 2 ps long laser pulse with an energy of DU (joules)?