FPCCD option of ILD vertex detector

Yasuhiro Sugimoto KEK for FPCCD VTX group @LCWS2012

Outline

- FPCCD VTX design parameter
- FPCCD sensors
- Support structure

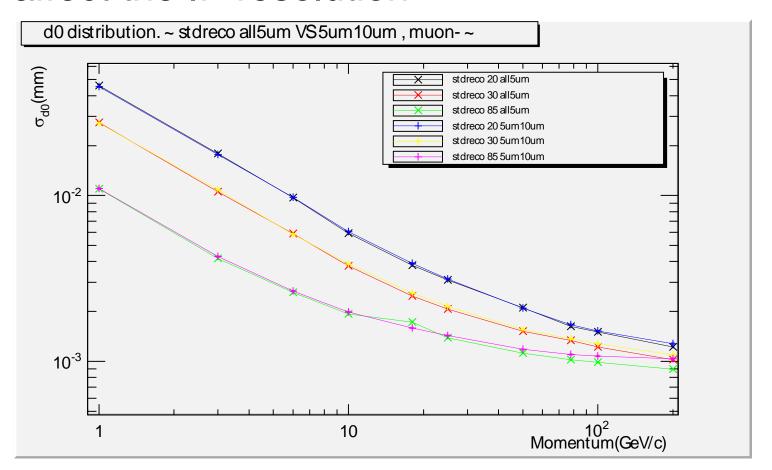
FPCCD VTX design parameter

Layer	R (mm)	Z (mm)	cosθ	Pixel size (μm)
1	16	62.5	0.97	5
2	18	62.5	0.96	5
3	37	125	0.96	10
4	39	125	0.95	10
5	58	125	0.91	10
6	60	125	0.9	10

- Pixel size of outer layers
 - It was $5\mu m$, but changed to $10\mu m$
 - → Reduction of number of readout channels and power consumption

Power consumption

Assumptions


Readout frequency	10 Mpix/s		
Readout time	200 ms		
Clock timing	Same for inner and outer layers		
Vertical shift time	40 us/line		
Power consumption	15 mW/ch		
Chip size (in/out)	11x62.5mm ² / 22x125mm ²		
Number of chips (in/out)	40 (=10x2x2) / 112 (=(11+17)x2x2)		

Results

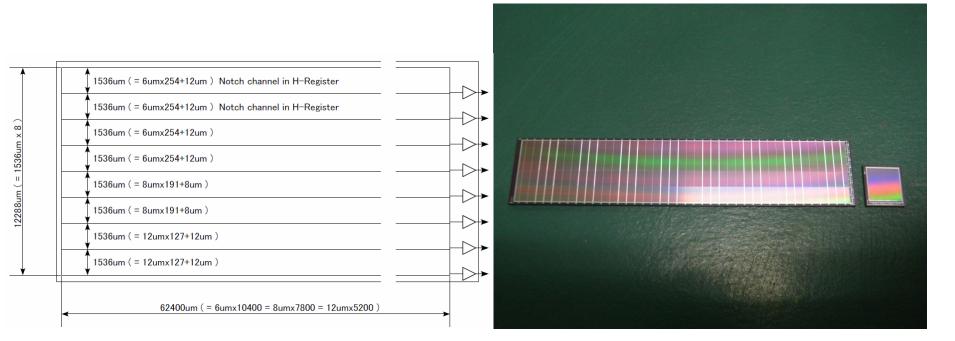
Pixel size (in)	Pixel size (out)	# of ch/chip (in)		# of ch (total)	Power consumption
5 um	5 um	28	56	7392	111 W
5 um	10 um	15	15	2280	34 W

Expected IP resolution

 Increase of pixel size of outer layers does not affect the IP resolution

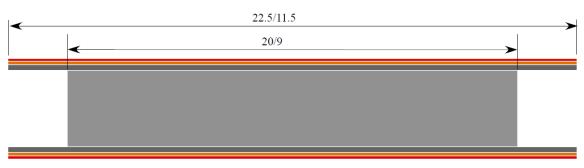
Pixel occupancy

- Simulation results for pixel occupancy at 1TeV (statictics:10BX)
- Increase of occupancy due to decrease of # of pixels (1/4) is less than x4


Layer	Occupancy for 5um (%)			Occupancy for 10um (%)		
	Direct	B.S.	Total	Direct	B.S.	Total
1	5.1	14.5	19.6			
2	3.1	7.3	10.4			
3	0.18	0.06	0.24	0.41	0.14	0.55
4	0.15	0.06	0.20	0.33	0.13	0.46
5	0.033	0.014	0.047	0.075	0.032	0.107
6	0.029	0.017	0.046	0.064	0.039	0.104

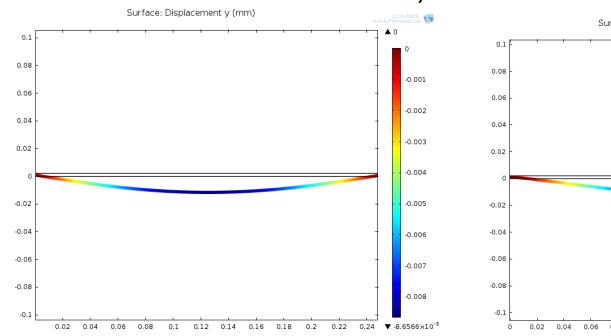
FPCCD sensors

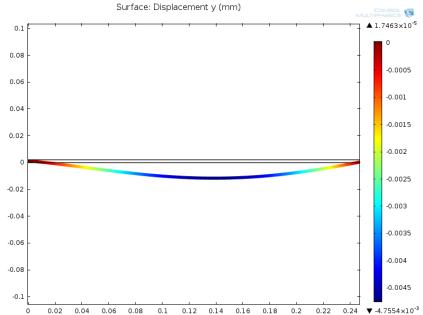
- Small prototype in FY2012
 - 6mm square image area
 - 6um pixel size
 - 4ch/chip with different horizontal shift register size: 6x6, 6x12, 6x18, 6x24 um²
 - It works except for the channel with 6x6um² horizontal shift register


FPCCD sensors

- Large prototype
 - 62.4x12.3mm² image area ~ Real size prototype for inner layers
 - 8ch/chip with several pixel sizes: 4chx6um, 2chx8um, 2chx12um
 - Si wafer has been made, but waiting for packaging

Support structure


- Ladder design
 - Ladder has a tricky shape to allow overlapping of sensors with adjacent ladder
 - Material budget
 ~0.3%X₀/ladder =
 0.15%X₀/sensor layer



		t (μm)	Total t (μm)	X0 (%)
Si		50	50	0.0534
Epoxi		10	2000	0.0028
FPC	Cu	9		0.0125
	Kapton	51		0.0179
Epoxi		10		0.0028
CFRP		100		0.0383
Epoxi		20		0.0056
RVC		1600		0.0300
Epoxi		20		0.0056
CFRP		100		0.0383
Epoxi		10		0.0028
FPC	Cu	9		0.0125
	Kapton	51		0.0179
Epoxi		10		0.0028
Si		50	50	0.0534
Total			2100	0.2966

Support structure

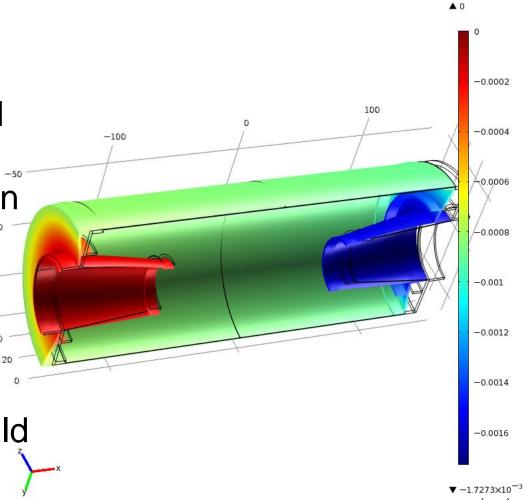
- Ladder deformation by self weight
 - Simplified geometry of 50um Si sensors (200um gap between two sensors) + CFRP sheets and RVC core

Two edges support: Maximum deformation ~ 8.66 um

One edge fix, one edge support: Maximum deformation ~ 4.76 um

Support structure

- Design in ILD simulation model
 - Similar to SLD vertex detector
 - 2 mm thick Be end plate, 0.5 mm thick Be support shell
 - Kapton+Cu flexible cables
- Ladders FTD-1 1 cm thick foam of the cryostat Beryllium shell Ti cooling tube od:2mm, id:1.5mm Cryostat; 0.2mm CFRP+1cm styrofoam+0.2mm CFRP 0.5 tLayer 3: 17 ladders Annulus block: 1mm CFRP Ladder block; 1.5mm CFRP Beam pipe Layer 2: 11 ladders Layer 1: 10 ladders FPC; 9mm width x 10/side + 0.5t 17mm width x 28/side \Rightarrow 3 layers of 50um Kapton + 9um Cu 146 🛏 164.6


Beryllium support shell

 FEA calculation of deformation

1kgf (9.8N) is applied in z-direction

Maximum deformation is less than 2µm

Total weight is less than 500g → max force caused by the friction at the kinematic mount would be less than 500gf

Surface: Displacement field, X component (mm) Surface Deformation: Displacement field

Summary

- FPCCD vertex detector design for DBD
 - 3 sets of double-layer ladders: total 6 layers
 - Rin=16mm, Rout=60mm
 - Pixels size is 5um for inner two layers and 10um for outer 4 layers:
 Impact parameter resolution is almost same as the all 5um pixel case
 - Material budget ~ 0.3%X0/ladder = 0.15%X0/layer
 - Ladders are supported by a Beryllium support structure: 2mm-thick endplate and 0.5mm-thick cylindrical support shell
 - The support structure is enclosed in a rigid foam cryostat and operated at -40°C
- Sensor R&D status
 - A small size prototype with 6um pixel size has been made and it works
 - Almost real size large prototype with 6 12um pixel size has been made: to be tested soon
 - Detailed characterization is expected in coming 1~2 years