

Visible and Invisible Higgs Decays at 350 GeV

Mark Thomson & Kelvin Mei University of Cambridge

- **★** To date, most studies only use $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$
- ★ Statistical precision limited by leptonic BRs of 3.5 %
- **★** Here: extend to $Z \rightarrow qq \sim 70 \%$ of Z decays
- **\star** Strategy identify $Z \rightarrow qq$ decays and look at recoil mass
- **★** Can never be truly model independent:
 - unlike for $Z \rightarrow \mu \mu$ can't cleanly separate H and Z decays

- ★ CLIC 350 GeV beam spectrum
- ★ CLIC_ILD detector model
- ★ Full simulation with overlayed background
- ★ 500 fb⁻¹ unpolarised beams
- **★** Results from new optimised analysis

- ★ Identify a two-jet system consistent with Z→ qq
 ★ Higgs can either decay invisibly or visibly
- **\star** For Z \rightarrow qq decays \Rightarrow
 - two jets or two jets + at least two other particles

★ ZH signatures: Z + nothing or Z + other visible particles

First divide into candidate invisible and visible Higgs decays

★ Aim for same selection efficiency for all Higgs decays independence

- ★ Identify a two-jet system consistent with Z→ qq
 ★ Higgs can either decay invisibly or visibly
- **\star** For Z \rightarrow qq decays \Rightarrow
 - two jets or two jets + at least two other particles

- Force events into:

 2-jets: invisible decays [Kelvin's talk]
 3-, 4-, 5- and 6- "jet" topologies (R=1.5)
 For each of these six topologies:
 - find two jets (> 3 tracks) most consistent with Z
 - determine mass of system recoiling against this "Z"

***** *All* events categorised in one of these two samples

Visible Decays

(> 2 jets)

- **★** Have two jets from Z + Higgs decay products:
 - ★ H→qq : 4 quarks = 4 "jets"
 - **\star H\rightarrowyy : 2 quarks + 2 photons = 4 "jets"**
 - ★ $H \rightarrow \tau \tau$: 2 quarks + 2 taus = 4 "jets"
 - ★ H→WW*→IvIv : 2 quarks + 2 leptons = 4 "jets"
 - ★ H→WW*→qqlv : 4 quarks + 1 lepton = 5 "jets"
 - ★ H→WW*→qqqqq : 6 "jets"
 - ★ H→ZZ*→vvvv : 2 "jets" (invisible analysis)
 - ★ H→ZZ*→vvqq : 2 quarks = 4 "jets"
 - ★ H→ZZ*→qqII : 4 quarks + 2 leptons = 6 "jets"
 - ★ H→ZZ*→qqqqq: 6 quarks = 6 "jets"

Force event into 4-, 5-, 6- jet topologies
 For each, look at all jet combinations, e.g. for 4-jet topology

- * "Z" candidate = is the di-jet combination closest to Z mass from all three jet combinations, i.e. one per event
- ★ Repeat for 5- and 6-jet topologies...

★ For example, consider genuine ZH→qqqq decays ★ Plot mass of "candidate Z" vs. recoil mass for 4-, 5-, 6-jet hypotheses

★ Clear Z and H signature in 4-jet reconstruction...

★ Similarly for $ZH \rightarrow qq\tau\tau$

★ Similarly for $ZH \rightarrow qqWW^* \rightarrow qqqqlv$

***** Preselection now greatly simplified

$$-\log_{10}(y_{23}) > 2$$
$$-\log_{10}(y_{34}) > 3$$

Not two-jet like

 $70 \,\text{GeV} < m_{q\overline{q}} < 130 \,\text{GeV}$ $80 \,\text{GeV} < m_{\text{recoil}} < 200 \,\text{GeV}$

Very loose mass cuts

★ Targeted background cuts for: $q\overline{q}$ $W^+W^- \rightarrow q\overline{q}\ell\nu$ $W^+W^- \rightarrow q\overline{q}q\overline{q}$ $ZZ \rightarrow q\overline{q}q\overline{q}$ $ZZ \rightarrow q\overline{q}q\overline{q}$ $ZZ \rightarrow q\overline{q}q\overline{q}$ $W^+\psi^- \rightarrow q\overline{q}\mu^+\ell^ W^+W^- \rightarrow Q\overline{q}\mu^+\mu^-$

- Assume each event is ZZ → qqqq
- Therefore: force into 4 jets
- Choose jet pairing (12)(34), (13)(24) or (14)(23) with single jet-pair mass closest to Z mass

* Cut on reconstructed di-jet masses (not recoil mass)

Mark Thomson

e.g. WW → qqqq

- Assume event is $WW \rightarrow qqqq$
- Therefore: force into 4 jets
- Choose jet pairing (12)(34), (13)(24) or (14)(23) with single jet-pair mass closest to W mass

e.g. WW → qqlv

- Assume event is WW → qqlv
- Therefore: force into 3 jets
- Choose jet pairing (12) (13) (23) closest to W mass, only consider jets with >2 track

4, 5, or 6 jets?

★ Find that it rarely helps going from 5 → 6: even if a 6-jet final state, provided reconstruct two "hard" jets from Z decay OK

So choose between 4 or 5 jet topology:

- ★ Default is to treat as 4-jets
- **★** Reconstruct as 5-jets only if:
 - -log₁₀(y₄₅) < 3.5 AND</p>
 - 5-jet reconstruction gives "better" Z mass and "better" Higgs recoil mass "better" = closer to true masses

Signal m_{ag} vs m_{rec}

Signal m_{ag} vs m_{rec}

Signal vs Background

Signal vs Background

★ Signal region clearly separated from background

That's about it !

★ Use relative likelihood selection

★ Input variables

- m_{qq} vs. m_{rec}
- $|\cos \theta_{\rm Z}|$
- $|\cos\theta_{q}^{*}|$

Calculate absolute likelihood for given event type

 $L = P(m_{qq}, m_{rec}) \times P(|\cos \theta_Z|) \times P(|\cos \theta_q^*|)$

NOTE: 2D mass distribution includes main correlations

Absolute likelihoods calculated for two main event types:
 Combined into relative likelihood

$$\mathcal{L}(\mathrm{HZ}) = \frac{L(\mathrm{HZ})}{L(\mathrm{HZ}) + L(\mathrm{back})}$$

Final(?) Results

Process	$\sigma/{ m fb}$	$\epsilon_{\rm presel}$	$\epsilon_{\mathscr{L}>0.70}$	$N_{\mathcal{L}>0.70}$	★ For optimal cut
$q\overline{q}$	25180	0.5 %	<0.1 %	6211	 signal ~9.5k events
qqlv	5914	6.4 %	0.1 %	3895	background ~ 19k events
qqqq	5847	4.2%	0.4%	10818	15 % improvement
q q 11	1704	1.2%	0.1%	1218	
$q\overline{q}\nu\overline{\nu}$	325	0.6%	<0.1%	35	c.f. LCWS analysis
$Hv_e\overline{v}_e$		- %			
HZ	93.4	44.0 %	20.3 %	9493	_
$H \rightarrow invis.$		0.6%	<0.1%	_	-
$H \rightarrow q\overline{q}/gg$		43.5 %	20.6%	6211	Efficiencies same
${\rm H} \rightarrow {\rm WW^*}$		44.7 %	19.5 %	2240	to ~10 % !!!
$H \rightarrow ZZ^{*}$		40.0%	18.1%	254	
$H \to \tau^+ \tau^-$		47.6%	21.4%	738	almost model
${ m H} ightarrow \gamma\gamma$		42.8 %	22.1 %	32	
$H \rightarrow Z\gamma$		41.8%	17.6%	17	independent
${ m H} ightarrow \mu^+ \mu^-$		39.5 %	20.6 %	3	

Analysis performed by: Kelvin Mei

nvisible Decays

Invisible Higgs Decays

 ★ Start from 2-jet sample: essentially removes ~all Higgs "background" (except H→ZZ*→vvvv and a little H→ττ)
 ★ Cut on di-jet mass (Z) and recoil mass (H) to select events

BDT Selection

★ Preliminary results (7 variable BDT selection)

Signal						
Channel		Efficiency				
$Z H \rightarrow qq$ i	invis.	20.7 %				
Backgrounds						
Channel	Efficiency		Events			
qqlv	<0.1 %		900			
qqll	<0.1	1 %	4			
qqvv	1.5	%	2414			

★Assuming no invisible decays (1 sigma stat. error):

$$\Delta \sigma_{\text{invis}} = \pm 0.57 \%$$

(CLIC beam spectrum, 500 fb⁻¹ @ 350 GeV, no polarisation)

Model Independence

★ Combining visible + invisible analysis: wanted M.I.

i.e. efficiency independent of Higgs decay mode

Decay mode	$oldsymbol{arepsilon}_{\mathscr{L}>0.70}^{\mathrm{vis}}$	$arepsilon_{ m BDT>0.08}^{ m invis}$	$\boldsymbol{\varepsilon}^{\mathrm{vis}} + \boldsymbol{\varepsilon}^{\mathrm{invis}}$	
$H \rightarrow invis.$	<0.1 %	20.7 %	20.7 %	
$H \rightarrow q\overline{q}/gg$	20.6 %	<0.1 %	20.6 %	
$H \rightarrow WW^*$	19.5 %	<0.1 %	19.8 %	
$H \rightarrow ZZ^*$	18.1 %	0.9 %	19.0%	
$H \to \tau^+ \tau^-$	21.4 %	0.1 %	21.5 %	effic
${ m H} ightarrow \gamma \gamma$	22.1 %	<0.1 %	22.1 %	
$H \to Z \gamma$	17.6 %	<0.1 %	17.1 %	
$H \rightarrow \mu^+ \mu^-$	20.6 %	<0.1 %	20.6 %	

★ Combining visible + invisible analysis: wanted M.I.

i.e. efficiency independent of Higgs decay mode

Decay mode	$arepsilon_{\mathscr{L}>0.70}^{\mathrm{vis}}$	$arepsilon_{ m BDT>0.08}^{ m invis}$	$\varepsilon^{\rm vis} + \varepsilon^{ m invis}$	_
$H \rightarrow invis.$	<0.1 %	20.7 %	20.7 %	
${ m H} ightarrow { m q} { m q} { m g}$	20.6 %	<0.1 %	20.6 %	
$\mathrm{H} \rightarrow \mathrm{W}\mathrm{W}^{*}$	19.5 %	<0.1 %	19.8 %	
$H \rightarrow ZZ^*$	18.1 %	0.9 %	19.0%	Very similar
${ m H} ightarrow au^+ au^-$	21.4 %	0.1 %	21.5 %	efficiencies
${ m H} ightarrow \gamma\gamma$	22.1 %	<0.1 %	22.1 %	
$H \rightarrow Z\gamma$	17.6%	<0.1 %	17.1 %	
${ m H} ightarrow \mu^+ \mu^-$	20.6 %	<0.1 %	20.6 %	
$H \rightarrow WW^* \rightarrow q\overline{q}q\overline{q}$	19.3 %	<0.1 %	19.3 %	
$H \rightarrow WW^* \rightarrow q\overline{q} l\nu$	19.6 %	<0.1 %	19.6%	Look at wide
$H \rightarrow WW^* \rightarrow q\overline{q}\tau\nu$	19.9%	<0.1 %	19.9 %	range of WW
$H \to WW^* \to l\nu l\nu$	22.0 %	0.3 %	22.3 %	
$H \to WW^* \to l \nu \tau \nu$	16.7 %	0.3 %	17.0%	topologies
$H \to WW^* \to \tau \nu \tau \nu$	12.2 %	1.3 %	13.6%	

Mark Thomson

$\Delta(\sigma_{\rm HZ}) = \pm 1.8\%$

(CLIC beam spectrum, 500 fb⁻¹ @ 350 GeV, no polarisation)

★ Combined with leptonic recoil mass

 $\implies \mid \Delta(g_{\rm HZZ}) \approx \pm 0.8 \%$

"almost model independent"

Summary

★ Results now "final" ? ★ 0.8 % statistical sensitivity to g_{HZZ}