Higgs Self-Coupling Measurement at the ILC.

${\sf Claude-Fabienne}\ {\sf D\"urig}^1,\ {\sf Junping}\ {\sf Tian}^2,\ {\sf Jenny}\ {\sf List}^1,\ {\sf Keisuke}\ {\sf Fujii}^2$

 $^{1}\text{DESY}$ Hamburg, Germany ^{2}KEK , Japan

Americas Workshop on Linear Colliders 12-16 May 2014

- Higgs properties can be measured precisely at ILC (m_H, Γ^{tot}_H, etc.)
 - missing: **Higgs potential**, which represents test of EWSB and mass generation
- to probe shape of Higgs potential we need to determine the
 Higgs self-coupling

http://www.quantumdiaries.org

Double Higgs production processes

Fundamental difficulties:

- > irreducible SM diagrams: significantly degrade the coupling sensitivity
- production cross-sections are small —> high luminosities needed
- very large SM background
- > low-p_T $\gamma\gamma \rightarrow$ hadrons background (analysis with and without overlay)
- > BR(H \rightarrow bb) drop to higher Higgs masses

Irreducible diagrams and sensitivity of self-coupling

 irreducible diagrams with same final state, but do not concern selfcoupling

$$\succ$$
 cross-section $\sigma(\mathsf{ZHH})$ as a function of λ

- b: interference between diagrams
 - c: irreducible diagrams

 $\sigma_0(e^++e^-\rightarrow ZHH)$ $\sigma_0(e^++e^-\rightarrow v\overline{v}HH)$ M(H) = 125 GeV

1500 2000 2500 3000

1000

Junping Tian: LC-REP-2013-003

sensitive factor

2 0 500

Ecm [GeV]

Higgs-strahlung:

$$\frac{\Delta\lambda}{\lambda} = 1.64 \cdot \frac{\Delta\sigma}{\sigma}$$

WW-fusion:

$$\boxed{\frac{\Delta\lambda}{\lambda} = 0.76 \cdot \frac{\Delta\sigma}{\sigma}}$$

w/o interference the factor would be 0.5

Analysis strategy - Decay Channels

before discovery (finished analysis) after discovery (ongoing analysis)

H •----`*H 7.**

assuming $P(e^+e^-) = (0.3,-0.8)$ at $\mathcal{L} = 2 \text{ ab}^{-1}$

$e^+e^- \rightarrow ZHH \rightarrow I^-I^+HH$

$e^+e^- \to ZHH \to \nu \bar{\nu} HH$

$e^+e^- \rightarrow ZHH \rightarrow q\bar{q}HH$

6jets mode (70% \times 60% \times 60% \approx 25%)

 $Z \longrightarrow q\bar{q} \quad H \longrightarrow b\bar{b} \quad H \longrightarrow b\bar{b}$

From $m_H = 120 \text{ GeV}$ to $m_H = 125 \text{ GeV}$

> smaller cross-section σ_{ZHH} to higher Higgs masses

$e^+e^- \rightarrow ZHH$	cross-section [fb]	expected no. of events
$m_{\rm H}=120~{ m GeV}$	0.23	460
$m_{\rm H}=125\;{\rm GeV}$	0.20	396

assuming $\mathsf{P}(e^+e^-)$ = (0.3,-0.8) at \mathcal{L} = 2 ab^{-1}

> decreasing branching ratio $BR(H \rightarrow b\bar{b})$

Results for 120 GeV, extrapolation to 125 GeV

 \blacktriangleright measurement at $\sqrt{
m s}=$ 500 GeV, ${\cal L}=$ 2 ab $^{-1}$ and P $(e^+e^-)=$ (0.3,-0.8)

> results for $m_H = 120$ GeV without $\gamma\gamma$ -overlay [Junping Tian, LC-REP-2013-003]

cross-section:
$$\frac{\delta \sigma_{ZHH}}{\sigma_{ZHH}} = 27\%$$

Higgs self-coupling: $\frac{\delta\lambda}{\lambda} = 44\%$

> result extrapolated to $m_H = 125 \text{ GeV}$

	500 Ge	V at \mathcal{L} =	\cdot 2 ab ⁻¹	Scenario A: HH \rightarrow bbbb
scenario	А	В	С	Scenario B: adding HH \rightarrow bbvvvv , expect 20%
$m_{\rm H}=120\;{\rm GeV}$	44%	35%	28%	Improvement Sconario C: analysis improvement (iet clustering
$m_{\rm H}=125\;{\rm GeV}$	53%	42%	34%	kinematic fit etc.) evnect 20%
weighted results				kinematic itt, etc.), expect 20%

improvement

Using ZHH (H \to bb) at \sqrt{s} =500 GeV we would expect a precision of 53% on the Higgs self-coupling for $m_H=125~GeV$

Analysis strategy $e^+e^- \rightarrow ZHH$ at $\sqrt{s} = 500$ GeV

Perform analysis for $m_H = 125 \text{ GeV}$ without and with overlay and investigate the differences

analysis strategy identical to LC-REP-2013-003

NEW low $p_T \gamma \gamma \rightarrow$ hadrons background

> virtual photons which got radiated off the primary beam electrons

> real photons due to bremsstrahlung and synchrotron radiation

Event selection:

- isolated lepton selection or rejection
- 2 $\gamma\gamma$ -overlay removal
- 3 cluster particles into jets and get flavor tag information
- 4 pair jets to form signal bosons
- 6 each dominant background is suppressed by training a separate neural net

Strategic difficulties:

- > flavor tagging and isolated lepton selection: need very high efficiency and purity
- Higgs mass reconstruction: mis-clustering, wrong jet-pairing
- > neural net training: train separate neural nets, large statistics needed
- > analysis strategy optimised for ZHH, not just self-coupling diagram

Isolated lepton selection

old lepton selection - isolation requirement: cut based on energy distributions in calorimeter new lepton selection - isolation requirement: neural net based (MVA)

Example of input variable: energyratio

define cone around direction of rec. particle and sum up energy of particles inside this cone
 energyratio is E/(E + Econe)

isolated lepton has small Econe, so energyratio close to one

đ		s.	ignal '							-
ž.	30	E B	ackgro	bund						3
(N/I)	25	-								-
	20	Ē								
	15	Ē						L		a /00
	10	Ē								0000
	5	Ē								(a, 6)
	•	Ē	Ja.					. L		- i i
	0	-0.2	0	0.2	0.4	0.6	0.8	1	1.2	1.4
								MLP	respo	nse

neural net output for electrons

efficiency (%)	eehh	μμhh	bbbb	evbbqq	$\mu \nu b b q q$
new selection	87.0	89.1	0.0017	0.315	0.020
old selection	85.7	88.4	0.028	1.44	0.10

New lepton selection strategy increases signal efficiency. Suppression of hadronic and one-lepton backgrounds is significantly improved.

Removal of low-p_T $\gamma\gamma ightarrow$ hadrons background

low- $p_T \gamma \gamma \rightarrow$ hadrons overlaid events per interaction:

 $< N_{\gamma\gamma}> = 1.7$

(ILD/SiD standard, but overestimated)

apply FastJetClustering: k_TExclusiveNJets which R-value?

- ▶ for R ≥ 1.2 almost no increase in signal efficiency but in overlay
- > best recovery of bare evts R = 1.3
- use only reconstructed particles in the clustered jets for analysis

after isolated lepton selection or rejection cluster remaining particles into jets
 clustering algorithm: Durham algorithm

- mis-clustering of particles degrades Higgs mass resolution
- ongoing work: new jet-clustering algorithm
- \blacktriangleright perfect jet-clustering can improve coupling precision by pprox 10% or more

Jet-pairing

 \blacktriangleright combine the jets by choosing combination with smallest χ^2

Higgs mass resolution important for neural net training (input variables)

- > jet-pairing (\approx 70% correct pairing)
- additionally: investigate kinematic fitting

Kinematic Fitting

MarlinKinFit package

σ [GeV]

E, p conservation invariant mass constraints

> - $M_{ij} = X \text{ GeV}$ - $M_{ij} = M_{lk}$ - $M_{ij} = (X \pm Y) \text{ GeV}$

ongoing: implementation in Higgs self-coupling analysis

100

200

need: jet-quark comparison,

association via angle differences

Claude Fabienne Dürig | Higgs self-coupling at ILC | Americas Workshop on Linear Colliders, 12-16 May 2014 | 14/18

Matrix Element Method

ME tools within Marlin framework, thanks to Junping Tian and Keisuke Fujii

→ talk by Junping Tian "Matrix Element Method for ILC physics analysis"

GOAL implement MEM in Higgs self-coupling analysis

1 next: use different MEs for better signal/background separation (ZHH, ZZZ, etc.)

2 future: optimise selection for self-coupling diagram in ZHH: ME irreducible diagrams, ME self-coupling diagram

Preliminary results for 125 GeV without overlay

m_H= 120 GeV results extrapolated to 125 GeV give precision of 53% on Higgs self-coupling
 preliminary results without overlay

modes	signal	background	sig	gnificance
			excess	measurement
$ZHH \rightarrow I^-I^+HH$	3.0	4.3	1.16σ	0.91σ
	3.3	6.0	1.12σ	0.91σ
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	5.4	7.0	1.72σ	1.45σ
$ZHH \rightarrow q\bar{q}HH$	9.1	21.3	1.78σ	1.61σ
	9.0	34.7	1.41σ	1.30σ

cross-section:
$$\frac{\delta \sigma_{ZHH}}{\sigma_{ZHH}} = 32\%$$

	500 GeV at $\mathcal{L}=2$ ab $^{-1}$							
scenario	А	В	С					
extrapolated	53%	42%	34%					
full analysis	52%	41%	33%					

Extrapolation works, slightly conservative

Higgs self-coupling:
$$\frac{\delta\lambda}{\lambda} = 52\%$$

We achieve a precision of 52% on the Higgs self-coupling for $m_{\rm H}=125~{\rm GeV}!$ Effect of $\gamma\gamma\text{-}{\rm overlay}?$

Preliminary results for 125 GeV with overlay

modes	signal	background	significance		
			excess	measurement	
$ZHH \rightarrow I^{-}I^{+}HH$	2.4	4.0	0.94σ	0.72σ	
	3.2	7.0	1.01σ	0.83σ	
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	3.8	4.0	1.53σ	1.22σ	
$ZHH \rightarrow q\bar{q}HH$	8.3	22.3	1.59σ	1.44σ	
	8.7	39.3	1.29σ	1.19σ	

cross-section:	$rac{\delta\sigma_{ m ZHH}}{\sigma_{ m ZHH}}=36.2\%$
----------------	---

Higgs self-coupling: $\frac{\delta\lambda}{\lambda} = 59.4\%$

	500 GeV at $\mathcal{L}=2$ ab $^{-1}$							
scenario	А	В	С					
w/o overlay	52%	41%	33%					
w overlay	59%	48%	38%					

Considering $\gamma\gamma$ -overlay, we achieve a precision of 59% on the Higgs self-coupling

$1 \; {\sf TeV}$ at ${\cal L}=2.5 \; {\sf ab}^{-1}$								
А	В	С						
16%	13%	10%						

arXiv:1310.0763v3[hep-ph]

After 10 years of running ILC we can achieve a precision of 10% on the Higgs self-coupling (w/o overlay)

Claude Fabienne Dürig | Higgs self-coupling at ILC | Americas Workshop on Linear Colliders, 12-16 May 2014 | 17/18

Summary and Outlook

Ongoing work

- key algorithms: b-tagging, lepton selection, jet-finding, jet-clustering
- investigate kinematic fitting (Benjamin Hermberg, DESY)
- Matrix Element Method (Junping Tian & Keisuke Fujii, KEK)
- optimise analysis strategy (now optimised for ZHH, not for self-coupling diagram)
- ➤ analysis with H→WW* (Masakazu Kurata, University of Tokyo) → next talk

Conclusion

- measuring Higgs self-coupling is fundamental task for next generation LC
- direct determination of Higgs potential through double Higgs production
- measurement of Higgs self-coupling challenging
- > considering $\gamma\gamma$ -overlay
- \blacktriangleright preliminary results for m_H = 125 GeV gives precision of 59.4% at $\sqrt{s} = 500$ GeV
- starting points for improvement
- long term perspective: at 1 TeV achieve precision of < 10%</p>

BACKUP SLIDES

Claude Fabienne Dürig | Higgs self-coupling at ILC | Americas Workshop on Linear Colliders, 12-16 May 2014 | 19/18

Analysis strategy

- \blacktriangleright select two isolated charged leptons consistent with M_Z
- cluster other particles into four jets
- pair four jets to form two Higgs bosons
- neural net analysis performed

- reject events with isolated charged leptons
- cluster other particles into four jets
- pair four jets to form two Higgs bosons
- use flavor tagging information
- neural net analysis performed

- reject events with isolated charged leptons
- cluster other particles into six jets
- pair six jets to form two Higgs bosons and a Z-boson
- use flavor tagging information
- neural net analysis performed

leptonic channel: optimised cuts

ELECTRON TYPE

optimised with overlay

- ▶ cut1: $|M_Z 91 \text{ GeV}| < 32 \text{ GeV}$
- ➤ cut2: MVAllbb > 0.79
- > cut3: MVAlvbbqq > 0.81
- ➤ cut4: bmax3 > 0.22
- > cut5: MVAllbbbb > 0.3

optimised without overlay

- ▶ cut1: $|M_Z 91 \text{ GeV}| < 32 \text{ GeV}$
- ▶ cut2: MVAllbb > 0.78
- > cut3: MVAlvbbqq > 0.62
- ➤ cut4: bmax3 > 0.18
- > cut5: MVAllbbbb > 0.25

MUON TYPE

optimised with overlay

- ▶ cut1: $|M_Z 91 \text{ GeV}| < 32 \text{ GeV}$
- > cut2: MVAllbb > 0.71
- > cut3: MVAlvbbqq > 0.65
- ▶ cut4: bmax3 > 0.13
- > cut5: MVAllbbbb > 0.27

optimised without overlay

- ▶ cut1: $|M_Z 91 \text{ GeV}| < 32 \text{ GeV}$
- ▶ cut2: MVAllbb > 0.78
- > cut3: MVAlvbbqq > 0.84
- ▶ cut4: bmax3 > 0.13
- > cut5: MVAllbbbb > 0.24

without overlay

with overlay

	eebb	$\mu\mu bb$	$e\nu bbqq$	$\mu\nu bbqq$	$\tau \nu b b q q$	bbqqqq	bbbb	llbbbb	llqqH	bgrd	signal (ll4b)
expected	284117	49565.7	248454	245936	245708	624060	40234.4	69.5	150.9	$1.7\cdot 10^6$	40.5
preselection	2697.4	1414.9	520.0	75.0	31.6	4.2	0.4	15.0	129.3	4887.8	23.2 (7.6)
	2660.9	1516.3	509.9	67.9	30.9	4.2	0.4	14.8	128.1	4933.2	22.9 (7.5)
ltype = 11	2697.4	0.1	520.0	1.2	29.2	4.2	0.4	7.4	63.3	3323.1	11.4 (3.8)
	2660.9	0.2	509.9	0.5	27.4	4.2	0.4	7.2	62.8	3273.4	11.2 (3.7)
cut1	2383.9	0.1	426.9	0.3	23.4	1.8	0.3	7.1	62.8	2906.6	11.3 (3.7)
	2375.9	0.1	417.6	0.5	19.7	1.8	0.3	7.0	62.2	2885.0	11.1 (3.7)
cut2	38.1	0	245.0	0.2	12.5	1.8	0.1	4.6	43.5	345.8	8.4 (3.5)
	41.7	0	233.3	0	13.0	1.8	0.1	4.3	41.6	335.7	8.3 (3.4)
cut3	34.1	0	24.1	0	2.9	0.6	0	4.3	41.8	107.9	7.9 (3.4)
	37.4	0	24.9	0	2.6	0.6	0	4.0	39.3	108.8	7.5 (3.2)
cut4	3.5	0	0.9	0	0.3	0.3	0	3.9	9.5	18.6	3.9 (3.1)
	3.5	0	1.4	0	0.3	0.3	0	3.5	7.8	16.9	3.4 (2.8)
cut5	0.7	0	0.2	0	0	0.2	0	0.6	2.6	4.3	3.0 (2.5)
	0.8	0	0.5	0	0	0.2	0	0.5	2.0	4.0	2.4 (2.0)

without overlay

with overlay

	eebb	$\mu\mu bb$	$e\nu bbqq$	$\mu\nu bbqq$	$\tau \nu b b q q$	bbqqqq	bbbb	llbbbb	llqqh	bgrd	signal (ll4b)
expected	284117	49565.7	248454	245936	245708	624060	40234.4	69.5	150.9	$1.7\cdot 10^6$	40.5
preselection	2697.4	1415.0	520.0	75.0	31.6	4.2	0.4	15.0	129.3	4887.8	23.2 (7.6)
	2660.9	1516.3	509.9	67.9	30.9	4.2	0.4	14.8	128.1	4933.2	22.9 (7.5)
ltype = 13	0	1414.9	0	73.8	2.5	0	0	7.6	66.0	1564.7	11.8 (3.8)
	0	1516.1	0	67.4	3.5	0	0	7.5	65.3	1659.8	11.6 (3.8)
cut1	0	1363.4	0	61.7	2.2	0	0	7.4	65.5	1500.2	11.7 (3.8)
	0	1461.8	0	55.3	3.2	0	0	7.3	64.8	1592.4	11.5 (3.8)
cut2	0	35.7	0	30.6	1.6	0	0	4.8	45.1	117.9	8.8 (3.6)
	0	49.3	0	29.6	2.2	0	0	4.9	46.0	132.0	9.1 (3.5)
cut3	0	33.2	0	2.0	0.3	0	0	4.5	42.7	82.6	8.0 (3.4)
	0	48.5	0	5.6	0.3	0	0	4.9	45.1	104.4	8.6 (3.5)
cut4	0	4.4	0	0	0	0	0	4.2	10.9	19.6	4.2 (3.2)
	0	8.4	0	0.59	0	0	0	4.6	12.2	25.8	4.5 (3.3)
cut5	0	1.7	0	0	0	0	0	0.9	3.4	6.0	3.3 (2.6)
	0	2.0	0	0.6	0	0	0	0.8	3.6	7.0	3.2 (2.5)

neutrino channel: optimised cuts

optimised with overlay

cut1:

$$\begin{split} E_{vis} &< 372 \; {\rm GeV} + 0.83 \cdot P_t^{miss} \text{,} \\ M_Z &< 60 \; {\rm GeV} \end{split}$$

cut2:

```
\begin{split} &\mathsf{npfos}_{\mathsf{m}in} > 10, \\ &\mathsf{M}(\mathsf{HH}) < 200 \; \mathrm{GeV}, \\ &103 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 141 \; \mathrm{GeV}, \\ &103 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 136 \; \mathrm{GeV} \end{split}
```

- ➤ cut3: MVAbbbb > 0.93
- > cut4: MVAlvqqqq > 0.73
- cut5: MVAvvbbbb > 0.3
- ▶ cut6: bmax3 + bmax4 > 1.1

optimised without overlay

> cut1:

$$\begin{split} E_{vis} &< 364 \; {\rm GeV} + 0.83 \cdot P_t^{miss} \text{,} \\ M_Z &< 60 \; {\rm GeV} \end{split}$$

> cut2:

$$\begin{split} npfos_{min} &> 6, \\ M(HH) < 200 \ {\rm GeV}, \\ 100 \ {\rm GeV} < M(H1) < 139 \ {\rm GeV}, \\ 91 \ {\rm GeV} < M(H1) < 134 \ {\rm GeV} \end{split}$$

- ➤ cut3: MVAbbbb > 0.93
- > cut4: MVAlvqqqq > 0.66
- ➤ cut5: MVAvvbbbb > 0.56
- > cut6: bmax3 + bmax4 > 1.08

without overlay

with overlay

	vvbb	evbbqq	$\mu\nu bbqq$	$\tau\nu bbqq$	bbqqqq	bbbb	$\nu\nu$ bbbb	vvqqh	bgrd	signal (vv4b)
expected	272802	248454	245936	245708	624060	40234.3	97.1	447.0	$1.7\cdot 10^6$	80.1
preselection	545.4	1787.7	1480.9	37410.7	65529	31292	81.9	72.3	138200	28.5 (22.7)
	992.8	1996.6	1661.7	38659.3	69698	30922	80.9	74.6	144086	28.4 (22.4)
cut1	481.0	894.1	867.4	25002.4	1443.6	3943.2	80.5	70.1	32782.4	27.7 (22.0)
	862.4	989.7	929.3	24532.0	1247.8	3552.6	77.8	69.2	32260.9	26.6 (20.9)
cut2	6.7	208.0	225.3	5161.1	252.8	382.9	9.7	19.6	6266.3	16.8 (14.8)
	5.6	163.7	154.3	2951.7	270.5	211.5	4.8	8.6	3770.8	11.6 (10.4)
cut3	4.3	181.5	196.8	4325.4	121.6	13.3	6.4	15.9	4865.2	14.9 (13.1)
	2.4	110.9	112.1	1938.3	61.7	4.1	2.4	6.4	2238.4	8.6 (7.7)
cut4	4.3	34.5	45.3	602.9	42.8	7.7	4.1	8.5	750.3	11.8 (10.6)
	2.4	44.1	45.8	624.5	38.0	3.3	1.9	4.7	764.7	7.5 (6.8)
cut5	3.1	24.9	35.1	454.7	41.9	6.5	1.4	4.4	527.0	9.9 (8.9)
	2.4	37.3	39.8	568.3	36.9	3.1	1.3	4.1	693.3	7.1 (6.4)
cut6	0	0	0	1.6	0.1	3.0	0.6	1.7	7.0	5.4 (5.3)
	0	0	0	0.6	0.1	1.3	0.6	1.4	4.0	3.8 (3.8)

optimised with overlay

▶ cut1: prop31 + prob32 > 0.54

cut2:

- $\begin{array}{l} P_{t}^{\text{miss}} < 77 \; \mathrm{GeV}, \\ \text{npfos} > 245, \\ 37 \; \mathrm{GeV} < \mathsf{M}(\mathsf{Z}) < 136 \; \mathrm{GeV}, \\ 83 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 159 \; \mathrm{GeV}, \\ 62 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 162 \; \mathrm{GeV} \end{array}$
- ➤ cut3: MVAbbbb > 0.83
- > cut4: MVAbbqqqq > 0.51
- > cut5: MVAqqbbbb > 0.16
- ➤ cut6: bmax3 + bmax4 > 1.21

optimised without overlay

> cut1: prop31 + prob32 > 0.54

> cut2:

- $\begin{array}{l} P_{t}^{\mathsf{miss}} < 80 \; \mathrm{GeV}, \\ \mathsf{npfos} > 246, \\ 34 \; \mathrm{GeV} < \mathsf{M}(\mathsf{Z}) < 136 \; \mathrm{GeV}, \\ 81 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 170 \; \mathrm{GeV}, \\ 73 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 167 \; \mathrm{GeV} \end{array}$
- ➤ cut3: MVAbbbb > 0.71
- > cut4: MVAbbqqqq > 0.48
- > cut5: MVAqqbbbb > 0.14
- **cut6**: bmax3 + bmax4 > 1.22

without overlay

with overlay

	bbbb	lvbbqq	bbuddu	bbcsdu	bbcssc	qqbbbb	qqqqh	ttz	ttg	bgrd	signal (6b)
expected	40234.3	740098	156144	312013	155904	140.5	662.6	2197.2	2109.5	$1.4\cdot 10^6$	273.13
preselection	23233.7	16136.2	570.0	6167.0	12588.5	83.6	114.7	166.4	428.9	59488.9	81.6 (59.7)
	23589.4	18813.7	952.9	8143.2	14255.2	83.5	116.2	175.1	434.6	66563.9	81.8 (59.4)
cut1	2294.9	318.2	11.4	90.4	261.4	14.2	15.4	16.9	45.3	3068.3	19.1 (16.1)
	2681.6	496.0	20.0	165.7	376.6	14.8	16.3	17.9	48.8	3837.9	19.6 (16.4)
cut2	673.8	109.0	11.3	82.2	246.1	12.9	14.5	14.8	31.9	1196.5	18.3 (15.6)
	796.2	185.7	18.2	148.9	341.6	12.9	14.9	15.1	33.0	1566.6	18.3 (15.7)
cut3	11.9	18.7	9.9	67.4	201.5	9.1	12.3	13.3	26.7	371.0	16.2 (14.3)
	11.5	21.2	12.7	109.0	242.8	7.4	10.9	12.7	24.8	453.1	14.9 (13.1)
cut4	10.0	14.8	7.3	48.6	130.9	8.1	11.4	12.7	24.8	268.7	15.6 (13.8)
	10.1	17.3	9.9	77.2	160.5	6.2	9.9	12.1	22.4	325.9	14.1 (12.4)
cut5	9.5	14.0	7.3	47.2	127.5	7.1	11.1	12.5	24.3	260.5	15.4 (13.7)
	9.6	17.0	9.7	74.5	157.1	5.6	9.7	12.2	22.3	317.8	13.9 (12.3)
cut6	3.8	0	0.7	0.7	3.0	3.2	5.0	2.3	2.7	21.3	9.1 (8.5)
	2.7	0	0.3	2.2	4.2	2.3	4.5	2.4	3.0	22.3	8.3 (7.8)

optimised with overlay

- ▶ cut1: prop31 + prob32 < 0.54</p>
- cut2:

```
\begin{array}{l} P_{t}^{\text{miss}} < 77 \; \mathrm{GeV}, \\ \mathsf{npfos} > 245, \\ 65 \; \mathrm{GeV} < \mathsf{M}(\mathsf{Z}) < 133 \; \mathrm{GeV}, \\ 100 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 136 \; \mathrm{GeV}, \\ 96 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 141 \; \mathrm{GeV} \end{array}
```

- ➤ cut3: MVAbbbb > 0.73
- > cut4: MVAbbqqqq > 0.52
- > cut5: MVAqqbbbb > 0.11

cut6: bmax3 > 0.92, bmax3 + bmax4 > 1.37

optimised without overlay

> cut1: prop31 + prob32 < 0.54

> cut2:

 $\begin{array}{l} P_{t}^{\text{miss}} < 80 \; \mathrm{GeV}, \\ \mathsf{npfos} > 246, \\ 64 \; \mathrm{GeV} < \mathsf{M}(\mathsf{Z}) < 129 \; \mathrm{GeV}, \\ 104 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 134 \; \mathrm{GeV}, \\ 98 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 140 \; \mathrm{GeV} \end{array}$

- ➤ cut3: MVAbbbb > 0.59
- > cut4: MVAbbqqqq > 0.43
- > cut5: MVAqqbbbb > 0.15
- ➤ cut6: bmax3 > 0.91, bmax3 + bmax4 > 1.38

without overlay with overlay

	bbbb	lvbbqq	bbuddu	bbcsdu	bbcssc	qqbbbb	qqqqh	ttz	ttg	bgrd	signal (6b)
expected	40234.3	740098	156144	312013	155904	140.5	662.6	2197.2	2109.5	$1.41\cdot 10^6$	273.13
preselection	23233.7	16136.2	570.0	6167.0	12588.5	83.6	114.7	166.4	428.9	59488.9	81.6 (59.7)
	23589.4	18813.7	952.9	8143.2	14255.2	83.5	116.2	175.1	434.6	66563.9	81.8 (59.4)
cut1 (probZ)	20938.8	15818.0	558.6	6076.6	12327.1	69.3	99.2	149.5	383.6	56420.7	62.5 (43.6)
	20907.8	18317.7	932.9	7977.5	13878.5	68.7	99.9	157.2	385.8	62726.0	62.1 (43.0)
cut2 (m,pfos,pt)	158.6	212.7	65.5	800.0	1552.1	5.2	13.3	21.8	41.5	2870.9	20.7 (17.7)
	196.2	338.7	141.1	1263.7	2132.6	6.8	17.2	27.2	49.6	4173.1	21.9 (18.4)
cut3 (mlp1)	12.3	81.8	62.4	741.1	1431.1	4.6	12.4	21.5	40.1	2407.3	19.5 (16.8)
	13.9	134.0	128.8	1116.5	1866.8	5.6	15.1	26.5	47.4	3354.6	19.8 (16.7)
cut4 (mlp2)	11.8	65.5	51.6	549.8	989.3	4.5	12.2	21.1	38.9	1744.8	19.2 (16.6)
	11.9	109.6	82.1	666.7	1034.3	5.1	14.1	25.2	42.7	1991.9	19.0 (16.1)
cut5 (mlp3)	11.3	64.7	50.3	541.7	973.4	4.1	12.1	21.1	38.7	1717.4	19.1 (16.5)
	11.8	109.6	81.2	661.7	1028.9	4.9	14.0	25.2	42.6	1979.9	18.9 (16.0)
cut6 (bmax3)	4.6	0.3	2.9	5.2	4.9	1.7	4.6	4.3	6.0	34.7	9.0 (8.2)
	5.6	0.5	2.4	6.2	5.1	2.0	5.8	5.0	6.6	39.3	8.7 (7.9)

Preliminary results for $m_H = 125 \text{ GeV}$ with overlay

preliminary results for $m_{\text{H}}{=}~125~\text{GeV}$ without overlay:

modes	signal	background	sig	gnificance
			excess	measurement
$ZHH \rightarrow I^{-}I^{+}HH$	3.0	4.3	1.16σ	0.91σ
	3.3	6.0	1.12σ	0.91σ
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	5.4	7.0	1.72σ	1.45σ
m ZHH ightarrow q ar q HH	9.1	21.3	1.78σ	1.61σ
	9.0	34.7	1.41σ	1.30σ

We achieve a combined signal significance of $s\sigma=3.8\sigma$ We achieve a precision on the Higgs self-coupling without weighting of 56.7%

preliminary results for $m_H = 125 \text{ GeV}$ with overlay:

modes	signal	background	significance	
			excess	measurement
$ZHH \rightarrow I^{-}I^{+}HH$	2.4	4.0	0.94σ	0.72σ
	3.2	7.0	1.01σ	0.83σ
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	3.8	4.0	1.53σ	1.22σ
ZHH ightarrow q ar q HH	8.3	22.3	1.59σ	1.44σ
	8.7	39.3	1.29σ	1.19σ

Considering overlay, we achieve a combined signal significance of $s\sigma=2.9\sigma$ We achieve a precision on the Higgs self-coupling without weighting of 63%

Claude Fabienne Dürig | Higgs self-coupling at ILC | Americas Workshop on Linear Colliders, 12-16 May 2014 | 30/18

Cross-section and self-coupling determination

Cross-section measurement via parameter estimation through minimum likelihood method
 Define likelihood:

$$L_{s+b} = \prod_{i} \frac{e^{-(s_i+b_i)}}{n_i!} (s_i+b_i)^{n_i}$$
$$L_b = \prod_{i} \frac{1}{n_i!} e^{-b_i} b_i^{n_i}$$

▶ Only s_i (*i* = search mode) is related to σ_{ZHH} : $s_i = \sigma_{ZHH} \cdot \mathcal{L} \cdot BR_i \cdot \epsilon_i$

Excess and measurement significance

excess significance: assuming there is no signal, the probability of observing events equal or more than the expected number of events $(N_S + N_B)$

$$p=\int\limits_{N_S+N_B}^{\infty}f(x;N_B)dx$$
 in case of large statistics: $\frac{N_S}{\sqrt{N_B}}$

measurement significance: assuming signal exists, the probability of observing events equal or less than the expected number of background events (N_B)

$$p=\int\limits_{-\infty}^{N_B}f(x;N_S+N_B)dx$$
 n case of large statistics: $\frac{N_S}{\sqrt{N_S+N_B}}$

convert to gaussion significance (s):

i

$$1 - p = \int_{-\infty}^{s\sigma} N(x; 0, 1) dx$$

LHC results on the self-coupling measurement arXiv:1308.6302v2[hep-ph] by Weiming Yao

- > process used: HH \rightarrow bb $\gamma\gamma$
- > investigated energies: $\sqrt{s} = 14$ TeV, $\sqrt{s} = 33$ TeV, $\sqrt{s} = 100$ TeV
- > integrated luminosity: $\mathcal{L} = 3 \text{ ab}^{-1}$

energy	$\sqrt{s}=14\;TeV$	$\sqrt{s}=33~TeV$	$\sqrt{s}=100~TeV$
precision	50%	20%	8%

- > high luminosity running at $\sqrt{s} = 14$ TeV, possible to observe signal with statistical significance of 2.3 σ with $\mathcal{L} = 3$ ab⁻¹ of data
- > at $\sqrt{s} = 33$ TeV, expect to observe signal with statistical significance of 6.2σ with $\mathcal{L} = 3$ ab⁻¹
- > at $\sqrt{s} = 100 \text{ TeV}$, expect to observe signal with statistical significance of 15.0σ with $\mathcal{L} = 3 \text{ ab}^{-1}$

Durham clustering algorithm

- Durham algorithm clusters the 2 objects i and j with the smallest mutual angle θ_{ij} and energy min(E²_i, E²_j).
- > algorithm work iterative: beginning with a list of jets that are all just particles
- \blacktriangleright between every particle pair (i,j) the relative distance y_{ij} is determined from
 - the energies E_i, E_j of the particles
 - and their mutual angle θ_{ij}

by:

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{E_{vis}^2}$$

two particles with smallest relative distance value y_{ij} are combined to a new object with four-momentum:

In figure object 3 and 4 are clustered to a new object 3^* .

New Jet-clustering (Junping Tian & Keisuke Fujii)

Junping Tian ECFA 2013 talk (DBD full simulation with 120 GeV Higgs boson)

Claude Fabienne Dürig | Higgs self-coupling at ILC | Americas Workshop on Linear Colliders, 12-16 May 2014 | 35/18