

Content

Overview over the DBD simulation and reconstruction setup

Introduction to Machine-induced background

Performance of the detector as relevant for the Analyses

Beam-Induced Background

Pair background 1 event per BX 450k particles

Generated by
GuineaPig
ascii → hepevt →
stdhep

Merged with every "physics" event

MCParticles that don't make hits will be dropped

yy interactions

4.1 events per BX @ 1 TeV 1.7 events per BX at 500 GeV

Generated by Whizard

Angular distribution of background

Incoherent pairs affect mostly occupancies and tracking efficiencies

Hadrons have enough energy to reach the calorimeter

Luminous Region

- Finite extension: $\sigma_z = 225 \, \mu \text{m}$
 - conservative compromise
- Events from beam-beam interactions (γγ→ hadrons, incoherent pairs) are distributed randomly over the luminous region
- Physics events always at z = 0

Reconstructed primary vertex position for γγ→ hadrons, pairs

Fitted width: 214 µm

Primary Vertex Resolution

Note the different scales

e+e- → hadrons and pair background Resolution 214 µm ttH semi-leptonic channel resolution < 3 µm

Primary Vertex Resolution II

e⁺e⁻ → invisible

- + pair background
- + hadrons

Full detector simulation and reconstruction

Fit with two 2D Gaussians: Width of the narrow Part: 33 µm

Flavor Tagging

Using LCFIPlus, tuned for SiD detector Classifier trained on dijet events

Single Particle ID

Why?

- Several analyses depend on excellent PID
 - WW, tth (semi-)leptonic, hmumu
- Currently, PID comes from PandoraPFA
 - Performance must not be perfect, but must be well-known and understood
- Digital HCAL: remove muons before clustering

How?

- Generate single particle of given type
- Full detector simulation
- org.lcsim tracking
- PandoraPFA reconstruction
- Plot ratio of reconstructed / generated particles of given type

Single Photons

Photon Identification > 97% in barrel and endcap

Transition region needs optimization

Single Electrons

Electron Identification at higher energy slightly worse than tracking efficiency Transition region needs optimization

Single Pions

Pion Identification efficiency commensurate with tracking efficiency At higher energies slight deterioration in the transition region

RMS₉₀ versus energy

Performance of the detector in physics events ZZ → 2 jets + invisible

Full simulation and reconstruction with and without background

Includes effects of jet finding

Studies indicate that performance at 1 TeV can be improved. Performance of PandoraPFA in DHCAL not yet optimal

Summary

- We have evaluated the performance of those aspects of the SiD Detector that are relevant for physics analyses
- The performance is more than adequate for DBD analyses in a realistic environment with machineinduced background
- Areas for improvement are clearly identified
- The DBD is not the end of SiD optimization studies

BACKUP