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Physics Impact  
•  There are numerous physics processes 

where flavor tagging plays a critical  
role 
–  Standard model physics: Higgs 
–  Beyond the standard model  

•  Reconstruct the whole decay chain  
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Research Thrusts 
•  Precision vertexing/tracking/imaging ideally requires detectors that have 

–  zero mass: transparency of ~0.1% X0 
–  zero power: allow for air cooling (< 50 W) 
–  zero dead zones 
–  zero dead time 
–  zero effective occupancy: integration over few bunches  
–  zero noise susceptibility: EMI immune  
–  1/zero precision: spacepoint < 5µm,  

              impact parameter 5µm	
  ⊕	
  10µm/(p	
  sin3/2	
  θ)	
  )	
  
–  1/zero pattern recognition capability: many layers close to IP  
–  Modest radiation hardness  

•  These aggressive set of goals and the physics need, has led to a wide range 
of R&D based on established and emerging technologies  

•  No technology has established itself yet. It is expected that the experiments 
will choose the best technology that will meet their needs at the time of the 
technical design 
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Detector Design Options  
•  Long Barrel Configuration (ILD) 

–  Single geometry for all layers  
–  Large charge sharing at small angles and 

larger occupancies  
–  More mass on particle trajectory at small 

angles (?) 
–  Limited number of space points on particle 

trajectory at forward angles 

•  Barrel and Disk Configuration (SiD) 
–  No precedent for disk geometry for pixel planes  

and associated services 
–  Uniform angular coverage and response  

•  Support Options  
–  Carbon fiber support structures  
–  Integrated support through etching of  

silicon sensors  
–  Support provided solely by Si sensors  
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Vertex Detector Sensor Technology  
•  Broad spectrum of sensor technologies are a candidate technology for the 

ILC vertex detectors  
•  CCD’s 

–  Fine Pixel CCD (Japan)  
–  Column Parallel (LCFI) † 

–  ISIS (LCFI) † 

–  Split Column (SLAC) † 

•  CMOS Active Pixels 
–  Mimosa series (Ires) 
–  MAPS (INFN) 
–  LDRD 1-3 (LBNL) † 

–  Chronopixel (Oregon/Yale) 
–  LePix  

•  SOI 
–  OKI/KEK (Imaging)   
–  FNAL 
–  LBNL 

•  3D Vertical Integration (Fermilab) 

•  DEPFET (Munich)   
DEPFET 

LBL-LDRD3 ISIS 

CPC2 

3D 



CCD Technology 
•  R&D is focused on fine pixel CCD sensors (FPCCD) and readout ASICs 
•  Goal:  

–  Pixel size : 5µm× 5µm 
–  Total # modules: 6080 
–  20,000×128 pixels/module  1010 pixels 
–  Full depleted, 15 µm thickness 
–  Readout speed > 10Mpix/s 
–  Readout noise < 50 e- , Power < 100 W  

•  Currently produced: FPCCD #3 
–  Pixel size: 12 – 6 µm 
–  Sensitive thickness: 15 µm 

•  Tests being carried out:  
–  Pixel size: 12µm×12µm 
–  4 frames with 512×128 pix/frame 

•  Status 
–  Readout speed limited to 1.5Mpix/s  
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CCD Technology: UK  
•  The UK groups have led the R&D on CCDs for many years  
•  However, over the last three years all ILC-specific efforts were terminated.  
•  The ISIS and column-parallel CCD efforts are moribund.  

•  Software: 
–  Development of the vertexing software, LCFI,  

had become the effective standard in the ILC  
community.  

–  Funding has stopped. Support transferred to Japan.   

•  R&D on low mass foam ladders is continuing and making progress.  
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CMOS 
•  Strong Strasbourg group developing CMOS MAPS  

sensors  
•  Strategy for ILC (ILD)  

–  Layer 1: spatial resolution  
•  Pixel pitch 16x16 µm2, binary output 
•  σ ≤ 3 µm, integration time ≤ 50 μs 

–  Layer 2: time resolution 
•  Pixel pitch 16x64-80 µm2, binary output 
•  σ ~ O(5) µm, integration time ≤ 10 μs 

–  Outer Layers: low power  
•  Pixel pitch 35x35 µm2, 4-bits ADC output 
•  4 cm2 of sensitive area 
•  σ ~ 4 µm, integration time ≤ 100 μs 

•  Proof of principle: Mimosa 26 
–  Used in EUDET telescope  
–  Pixel array: 1152 x 576, 18.4 µm pitch 
–  10 k images/s 
–  Also used in STAR VXD upgrade and  

for CBM MVD 
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High Resistivity CMOS 
•  Standard CMOS  

–  Epitaxial layer, resistivity ~10 Ohm.cm 
–  Charge collected through thermal diffusion  

•  High Resistivity CMOS 
–  Low-doped epitaxial layer 
–  Resitivity ≫100 Ohm.cm  
–  Deeper depletion through diode voltage 
–  Charge collected through drift:  

shorter and more spatially focused 
–  More radiation hard 

•  MIMOSA-26 HR 
–  400 Ohm.cm epi layer: 10, 15, 20 mm thick 
–  Exact same layout / MIMOSA 26 
–  S/N is factor 1.5 to 2 improved compared  

to standard process with source tests 
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VDSM CMOS 
•  Exploring very deep sub-micron (VDSM) CMOS process  

–  To date most Mimosa chips in AMS 350nm  
OPTO process 

•  MIMOSA27  
–  180 nm process (up to 6 metal layers) 
–  10 mm², 20 µm pitch, 4 sub-matrices of 64x64 
–  In pixel amplification 

•  Designing large area telescope  
–  Funded though AIDA project (FP7)  

•  Exploring planar 3D silicon technology  
–  Participants in Fermilab 3D run  
–  Porting design to 3 tiers   
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Chronopixel 
•  SiD vertex detector has two baseline options 

–  Chronopixel 
–  3D Silicon 

•  Chronopixel design provides for single  
bunch-crossing time stamping 
–  When signal exceeds threshold, time  

stamp provided by 14 bit bus is  
recorded into pixel memory, and  
memory pointer is advanced 

–  Comparator threshold adjusted for all  
pixels 

•  Current design 
–  50x50 µm2 pixels  
–  Two pixel architectures  

•  Regular p/n-well design  
•  Deep n-well design  

–  Detector sensitivity: 10 µV/e  
•  eq. to 16 fF 

–  Detector noise: 25 e- 
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Chronopixel 
•  Prototype pixels extensively tested by Nick Sinev  
•  Tests show that general concept is working 

–  Good sensitivity (µV/e-) as designed 
–  Sensors timestamp maximum recording speed  

(7.27 MHz) is adequate 
–  Noise figure with reset meets specifications 

•  Some issues with the chip 
–  Faulty power distribution net on the chip  
–  Calibration not fully functional  
–  Comparator offsets spread across array too large  

•  Expect second prototypes by early next year and are ready to test them 
•  The approved funding is sufficient for the design and manufacturing of the 

second prototypes  
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SPIDER 
•  SPIDER: Silicon Pixel Detector R&D (UK based) 
•  Broad spectrum of applications for pixel detectors 

–  180 nm process, 6 metal layers 
–  5/12/18 µm high resistivity epitaxial layers 
–  Deep p-well to avoid parasitic charge collection 
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MAPS 
•  Strong INFN effort on developing MAPS pixel detectors for SuperB, ILC 
•  Uses Deep n-well (DNW)  

–  The collecting electrode (DNW)  
is extended to obtain higher  
collected charge  

•  Reduce charge loss to  
competitive N-wells where  
PMOSFETs are located 

•  Many prototype matrices submitted: APSELn   
–  APSEL4D: 4K(32x128)  

50x50 µm2  matrix 
–  Sparsified readout + timestamp 
–  Pixel cell & matrix implemented with  

full custom design and layout 
•  Results 

–  60 e- threshold dispersion 
–  S/N = 23 
–  Average gain = 860 mV/fC 
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Vertical Integrated Circuits – 3D 
•  Vertical integration of thinned and bonded silicon tiers with vertical 

interconnects between the IC layers 

•  Technology driven by industry; offers potential for transformational 
new detectors  
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VIP Chip 
•  Fermilab started to actively pursue the 3D technology, initially with MIT 

Lincoln Laboratories (MIT-LL), who had developed the technology that  
enables 3D integration 

•  MIT-LL offers DARPA funded 3-tier multi-project run, 180nm SOI process  

•  Designed Vertical Integrated Pixel (VIP) chip for ILC pixel detector  
–  Pixel array 64x64, 20x20 µm2 pixels; design for 1000 x 1000 array 
–  Provides analog and binary readout information 
–  5-bit Time stamping of pixel hit  
–  Token passing readout scheme 
–  Sparse readout 

•  Chip divided into 3 tiers  
–  ~ 7 µm / tier  
–  175 transistors / pixel 

•  No integrated sensor 

•  Chip works!  
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Fermilab 3D Multi-Project Run  
•  Fermilab formed a 3D consortium and hosted a 3D 

multi project run with Tezzaron 
–  Two layers of electronics fabricated in the 

Chartered 130 nm process, useful reticule size is 
16x24 mm 

–  Wafers will be bonded face to face 
–  Submission closed September 2009  

•  17 Participating institutions in the MPW run 

•  Frame divided into 12 sub-reticules for consortium 
members 

•  More than 25 two-tier designs (circuits and test 
devices) 
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MPW Full Frame  
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Sub-Reticules  
•  Sub-reticule A (Strasbourg, Saclay, Pavia) :  

–  FE to be bonded to sensors from XFAB  
•  Sub-reticule B (CMP, Strasbourg, Saclay): 

–  MAPS for ILC 
•  Sub-reticule C (CPPM, Bonn): 

–  ATLAS 2D pixel design (FEI4) 
•   SUB-RETICULE D (CPPM, BONN, LAL) 

–  ATLAS 3D PIXEL DESIGN 
•  SUB-RETICULE E (ROMA, PAVIA, BERGAMO, PISA): 

–  3D MAPS 
•  SUB-RETICULE F (PAVIA, BERGAMO): 

–  3D MAPS 
•  Sub-reticule G Sub-reticule G (Orsay/LBNL) 

–  ATLAS Pixel FE 
•  Sub-reticule H (FNAL/CPPM/LBNL):  

–  Vertically Integrated CMS TRigger chip 
•  Sub-reticule I (FNAL):   

–  VIP, adapted to two layers 
•  Sub-reticule J (FNAL/AGH-UST/BNL):  

–  VIPIC: demonstrator for X-ray Photon Correlation Spectroscopy 
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Timeline and Schedule 
•  All designs were received by Fermilab in May 2009  
•  June 2009 – March 2010 spent preparing and reviewing the submission(s)  

–  Note, this was the first time for Fermilab and Tezzaron to organize a 
MPW run and there were a large number of ‘growing pains’  

–  A large number of problems were discovered 
•  Frame and street definitions  
•  Design kit incompatibilities, software bugs  
•  TSV issues: protection, spacing, bond interface   

•  March 6, 2010: Fabrication started   
•  More problems:  

–  Chartered stopped TSVs on 8 inch 0.13 CMOS wafers 
–  Chartered agreed to process wafers from FEOL through M4 
–  Tezzaron will add TSVs from M4 down into the substrate and complete 

the BEOL processing including the bond interface metallization 
–  Space will need to be left open on M1-M4 for the vias to pass through. 
–  Future potential benefit will be that wafers from other foundries can use 

the Tezzaron 3D process 

•  3D wafers should be available by the end of the year  
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•  INFN has pilot project with Fermilab 3D Tezzaron project for 3D MAPS 

–  Tier 1: sensor + analog FE + part of the discriminator 
–  Tier 2: part of the discriminator, digital front-end and peripheral readout 

electronics 
•  Extend to CMOS FE integrated with high resistivity sensor 

–  3D front-end chip  
(2 tiers) connected  
to HR sensor 

MAPS in 3D 
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Silicon On Insulator  
•  SOI is a ‘natural’ technology for integration of sensor and electronics 

–  High resistivity substrate (sensor) isolated through buried oxide layer 
from front-end  

•  MAMBO III chip developed by Fermilab  
–  Two tiers in KEK/OKI 200nm SOI process  

•  Tier one contains only diodes and shielding metal  
•  Tier two contains front-end  
•  Bonding through micro-bumps at T-Micro (formerly Zycube)  
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SOI  
•  LBNL studying SOI process for pixel detectors and  

imagers  

•  Technology 
–  OKI 0.20 µm FD-SOI process 
–  Prototype 5×5 mm2, 20×20 µm2 pixels 
–  1.8 V operational voltage 
–  40×172 analog pixels with 3T architecture 

•  Results 
–  Up to 50 MHz readout 
–  S/N ~ 17-20 at 50 MHz pixel clock  

(138 µs integration time) 

•  All SOI processes suffer from  
“backgate effect”, shift in thresholds  
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LePIX 
•  LePIX: monolithic detectors in advanced CMOS 

–  Collaboration between CERN, IReS in Strasbourg, INFN, C4i-MIND in 
Archamps and interest from Imperial College, UC Santa Cruz, Rutherford 

–  Group is not focused on ILC detectors per se 
•  MAPS:   

–  Non-standard processing on very high resistivity substrate, with serial 
readout not always compatible with future colliders, and with collection 
by diffusion very much affected by radiation damage 

•  LePIX:  
–  Develop monolithic pixel detectors integrating readout and detecting 

elements by porting standard 90 nm CMOS to wafers with moderate 
resistivity. 

–  Reverse bias of up to 100 V to collect signal by drift  
•  Advantages: 

–  Good radiation hardness (charge collection by drift) 
–  High speed, time tagging at the 25ns level 
–  Low power: 20 mW/cm2 in continuous operation 
–  Low cost 

•  Status 
–  Submitted a few test stuctures  
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The State of the Art: DEPFET   
•  The R&D carried out in the framework of the ILC has led to the development 

of the DEPFET technology to reach a level of maturity that is now the 
technology for the BELLE-II vertex detector 
–  Two layers at radius of 14 and 22mm 
–  Pixel size 50x50 and 50x75 µm2 

–  Sensor thickness 75 µm 

–  System of 8M pixels  

•  Sensors fabricated by MPI, HLL  
–  400 µm sensors  
–  Anisotropic deep etching to open  

window; frame provides all support  
–  Etching to provide connection to other  

sensor at z=0  

•  Readout 
–  Detector is always live  
–  Rolling shutter readout with frame 

rate of 20 µs  
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DEPFET Readout  
•  Three ASICs used to readout sensor  
•  All ASICs mounted directly on active Si sensor  

–  Need to provide under bump metallization  
for bump bonding  

•  Switcher 
–  Activates DEPFET transistor gates to  

initiate row readout and activate clear gates  
for the reset 

•  Drain Current Digitizer (DCD)  
–  Drain currents are amplified and digitized 

•  Data Handling Processor (DHP)  
–  Digital signal processing  

•  Common mode subtraction 
•  pedestal subtraction 
•  zero-suppression   

–  Controls and synchronization of the switcher  
and DCD  

–  DAQ and trigger communication  
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BELLE-II PXD: Material Budget 
•  Impressive overall material management (recall goal: 0.1% X0 per layer)   
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BELLE-II PXD: Material Budget 
•  Azimuthal dependence of material budget  
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BELLE-II PXD: Cooling  
•  Power consumption  

–  Four DCD and four DHP ASICs at  
total power of ~7W 

–  Four Switcher chips plus sensors 
at total power of ~1W  

–  Layer 1: 8 ladders 
–  Layer 2: 12 ladders  

•  Total power ~ 160 W per end  
–  DEPFET technology is a very  

low power option  

•  Active CO2 cooling at each end of 
the ladder 

•  Air flow cooling for Switcher chips  
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Support: PLUME 
•  PLUME: Pixelated Ladder with Ultralow Material Embedding 

–  Collaboration of Bristol, Oxford, DESY, IPHC 
•  Goal:  

–  Achieve a double-sided ladder prototype for a vertex detector by 2012 
–  material budget : ≤ 0.3% X0 

•  Concept: 
–  Six MIMOSA-26 sensors  
–  Kapton flex cable 
–  Silicon carbide foam (8% density), 2mm thick 
–  Power pulsing (≤ 200ms period, ~1/50 duty  

cycle) 
–  Power dissipation (100mW/cm2) 
–  Air cooling 
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Support: Serwiette 
•  SERWIETE:  SEnsor Raw Wrapped In an Extra-Thin Envelope 

–  Collaboration with IK-Frankfurt, GSI/Darmstadt and IMEC 
•  Goal:  

–  Sensor assembly mounted on flex and wrapped in polyimide film 
–  Material budget <0.15 % X0 for 1 unsupported layer 
–  Evaluate the possibility of mounting supportless ladder on cylindrical 

surfaces 
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Observations  
•  Many pixel technologies being pursued. Despite the major setbacks 

in the UK, it is a very healthy area of R&D  

•  It is an understatement to say that it is an enormous challenge to 
design and construct pixel detectors that meet the ILC 
specifications  

•  The technology, however, is becoming available to really build 
transformational detectors  

•  There seems to be a tendency for the pixel detectors to move 
towards generic pixel detector development which, I think, is 
beneficial to the community  

•  And, apologies to all efforts not mentioned  
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