

Linear Collider Workshop 2012, Arlington, USA

CLIC inner detectors cooling and mechanics

F. Duarte Ramos, H. Gerwig, M. Villarejo Bermudez

Outline

- CLIC_ILD layout and challenges;
- Air delivery and flow;
- CFD simulations;
- Lightweight mechanical support structures;
- Assembly;
- Cable routing;

CLIC_ILD Layout

- Vertex detector:
 - Barrel 3 double sided silicon pixel layers;
 - Endcaps 3 double sided silicon pixel disks;

Inner tracker:

- Barrel 2 silicon microstrip layers;
- FTD 1 silicon pixel & 4 silicon micro-strip disks;

Challenges

- Low material budget (<0.2% X/X0 per layer in VXB);
- Proper sensor cooling;
- High dimensional stability;
- Assembly and cabling integration;

Integrated design approach:

Cooling, support and cabling must be treated as one single problem.

Cooling needs

- Heat dissipated:
 - Silicon pixel layers 50 mW/cm² (averaged)
 - Silicon micro-strip layers 1 mW/cm² (averaged)
- Heat loads:
 - VTX region ≈ 310 W
 - SIT region ≈ 30 W
 - FTD region ≈ 110 W
- Room temperature operation;
- Air cooling is envisaged;

Air delivery

Two cooling supplies

- FTD:
 - Double wall outer support cylinder;
- VTX & SIT:
 - CLIC CDR 4mm thick SST conical beampipe portions;
 - Proposal 1mm* SST + 10mm air gap + 3mm SST;

VTX barrel & endcaps

3 VXEC disks \rightarrow 24 VXEC petals; Helical air stream; "No" extra material due to cooling; 450

CFD simulations - VTX

CFD simulations - SIT

(Convection only)

CFD simulations - FTD

(Convection only)

ILD FTD collaboration

- IFCA-Santander / CERN;
- Goal: mutually profit from knowledge of FTD design and CFD simulation to evaluate air cooling performance on a realistic FTD design;

VTX barrel support

FEM simulations	Upper half	Lower half
Maximum displacement [μm]	2.7	1.1
1st eigenfrequency [Hz]	215	215

VTX endcaps & SIT1 support

oppe	Па	II ae	iorma	LIOH
Time: 1 10/05/2012 14:24				11100
2.33e-2 Max 2.07e-2 1.82e-2 1.56e-2 1.30e-2 1.04e-2 7.78e-3 5.19e-3 2.59g		W	m	
233				×
	0.00	250.00	500.00 (mm)	

Unner half deformation

Lower half deformation

FEM simulations	Upper half	Lower half
Maximum displacement [μm]	23	24
1st eigenfrequency [Hz]	89	90

Heavy objects support

Given:

- $M_{\text{shield}} \approx 270 \text{ kg}$
- $M_{beampipe} \approx 45 \text{ kg}$

Goal:

 Decouple the supports of both objects

Assembly

Assembly

Assembly

Cabling

Summary

- CLIC inner detectors design must cleverly solve support, cooling and cabling issues in an integrated way;
- Current design proposal has taken into account some of those issues (ongoing work);
- Air cooling seems feasible but vibration is still an unknown variable (to be checked experimentally);
- Proposed solutions need to be checked against their impact on physics.

Thank You.