Neutralino relic density in the CPVMSSM and the ILC

G. Bélanger LAPTH

G. B, O. Kittel, S. Kraml, H. Martyn, A. Pukhov, hep-ph/08032584, Phys.Rev.D

Motivation

ILC measurements

DM properties: fit to observables

Other constraints

Motivation

- WMAP and SDSS gives precise information on the amount of dark matter
- Most attractive explanation for dark matter: new weakly interacting particle for example neutralino in SUSY models
- One challenge at colliders after discovery of new particles, measurement of their properties and "collider prediction" of relic density of DM
 - Check whether matches what has been measured in the sky
 - Confront standard cosmological picture
- Precision measurements at colliders are needed
- How difficult strongly depends on the details of the new physics model which SUSY scenario, what is the dominant DM annihilation process
- Studies exist for both LHC and ILC in CMSSM and MSSM bulk scenario, stau coannihilation- focus point scenario
 - Polesello, Tovey, Nojiri, Martyn, Bambade et al, Baltz et al,

Collider prediction of relic density in a CPVMSSM scenario

- MSSM generically has phases, although constrained from edm ..
- CPVMSSM could explain baryogenesis
- What needs to be measured?
 - Masses: LSP, NLSP + other particles that contribute to dominant process
 - Couplings of LSP: modification of coupling, for example due to a phase, can impact value of Ωh^2 by one order of magnitude G.B. et al. hep-ph/0604150

Stau-bulk scenario

Input parameters

$$M_1 = 80.47 \text{GeV}$$
 $M_2 = 170.35 \text{GeV}$ $M_3 = 700 \text{GeV}$ $\phi_1 = 180$
 $\mu = 600 \text{GeV}$ $\tan \beta = 10$ $\phi_{\mu} = 0$
 $M_{\tilde{\tau}_L} = 138.7 \text{GeV}$ $M_{\tilde{\tau}_R} = 135.2 \text{GeV}$ $A_{\tau} = 60 \text{GeV}$ $\phi_{\tau} = 0$

Mass spectrum

	$\tilde{\chi}_1^0$	$\tilde{\chi}_2^0$	$ ilde{\chi}^0_3$	$\tilde{\chi}_4^0$	$\tilde{\chi}_1^+$	$\tilde{\chi}_2^+$	h_1	$h_{2,3}$
	80.7	164.9	604.8	610.5	164.9	612.1	116.1	997.
	$ ilde{ au}$	$\tilde{\nu}_{ au}$	$ ilde{e}$	$\tilde{ u}_e$	\tilde{u}	d	$ ilde{t}$	\tilde{b}
R(1)	100.9	_	1000.9	_	999.4	1000.3	939.1	995.6
L(2)	177.2	123.1	1001.1	998.0	998.6	1001.7	1075.6	1006.4

Light gauginos and staus, staus are strongly mixed

LSP annihilates into tau pairs via stau exchange in t-channel – efficient if staus are mixed -- no coannihilation

ILC - measurements

- All signals in $\tau \tau E_{miss}$ disentangle sources determine parameters
 - Threshold scans
 - LSP mass from stau decays (endpoint energy spectrum in τ -- $\pi \nu$, $\rho \nu$, $3\pi \nu$)
 - Stau mixing angle from polarised cross section
 - Tau polarisation

Event generation

- SIMDET4.02 acceptance 125mrad
- e,γ veto >4.6mrad
- PYTHIA 6.2 with beam polarisation (0.8,0.6)
- QED radiation beamstrahlung –CIRCE
- τ decays –Tauola
- SM backgrounds: W pair
- SM ee-> $\tau\tau$ and ee->ee $\tau\tau$ negligible
- Selection for signal : two acoplanar jet in central region ($|\cos\theta| < 0.75$)
- Efficiency ~0.32

Mass from threshold scans

- e-Re+L for staus, LR for chargino
- Excitation curve: β³ for stau, β for chargino, use 2fb⁻¹ at each energy
- Mass of $\tau_1 \tau_2 \chi^+$

Stau mixing angle

- Polarised cross section (RL) at 280 GeV (below threshold for other sparticles)
- σ_{RL} depend on mixing angle
- To improve accuracy combine with σ_{LR}
- $\Delta m_{\tau} = 0.35 \text{GeV}$; $\delta \cos 2\theta = 0.017$

•Integrated luminosity 200fb⁻¹

Tau polarisation

- P_{τ} from stau decay depends on stau and neutralino mixing
 - τ mixing from polarized σ_{RL}
 - P_{τ} gaugino-Higgsino component of LSP
- $\tau \rightarrow \rho \nu \rightarrow \pi \pi \nu$
- E_{π}/E_{ρ} sensitive to P_{τ}
 - τ $_R$ ρ longitudinal $E_ρ$ peak z=0,1
 - τ _L- ρ transverse- E_{ρ} peak at z=0.5

•Integrated luminosity 200fb⁻¹

$$\mathcal{P}_{\tau} = 0.64 \pm 0.035$$

ILC measurements-summary

- Mass from threshold scans
- LSP mass from stau decays
- Stau mixing angle from polarised cross section
- Tau polarisation

channel	observables	
$\tilde{\tau}_1^+ \tilde{\tau}_1^-$	$m_{\tilde{\tau}_1} = 100.92 \pm 0.40 \text{ GeV}$	$m_{\tilde{\chi}_1^0} = 80.67 \pm 0.35 \text{ GeV}$
	$\cos 2\theta_{\tilde{\tau}} = -0.065 \pm 0.028$	$\mathcal{P}_{\tau} = 0.64 \pm 0.035$
$\tilde{ au}_2^+ \tilde{ au}_2^-$	$m_{\tilde{\tau}_2} = 176.9 \pm 9.1 \text{ GeV}$	
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	$m_{\tilde{\chi}_1^{\pm}} = 164.88 \pm 0.015 \text{ GeV}$	

DM properties : fit to ILC observables

- Fit to $m_{\tau 1}$, $m_{\tau 2}$ m_{χ} , m_{χ^+} , $\cos \theta_{\tau}$, P_{τ}
- Total $\sigma(\tau\tau)$ @400GeV
- Free parameters: $M_1,\,\mu,\,tan\beta,\,M_{L3},\,M_{R3},\!A_\tau,\,\Phi_1,\!\Phi_\tau$
- Check a posteriori that M_A , M_e small influence on Ωh^2 if M > 250 GeV
- MCMC method for efficient probing of parameter space

Large allowed parameter space for μ -tan β – strongly correlated because stau mixin

...fit to ILC observables

- M_1 (1-2GeV) and M_2 (~4GeV) well determined
- ϕ_1 arbitrary but correlated with M_1
- About 10GeV on M_{L3} , M_{R3} and $M_{R3} < M_{L3}$ only
- A_{τ}, ϕ_{τ} undetermined

Impact on relic density

- Allowed region $0.116 < \Omega h^2 < 0.19$
- WMAP: $0.094 < \Omega h^2 < 0.136$
- Ωh^2 large only for small μ more Higgsino component
- Need large phase to be below WMAP upper bound
- Within real MSSM $M_1>0$ would conclude that Ωh^2 too large

Higgs mass

 M_h is measured precisely but large parametric uncertainty -- masses of stops unknown

 Even if 10% accuracy on stop mass from LHC large range of tanβ allowed

CP-odd observables

• T-odd asymmetry in ee- $\chi_1 \chi_2$ with 2body decays

$$\tilde{\chi}_2^0 \to \tilde{\tau}_1^{\pm} \tau^{\mp}, \ \tilde{\tilde{\tau}}_1^{\pm} \to \tilde{\chi}_1^0 \tau^{\perp}$$

$$A_1 = \frac{\sigma(\mathcal{T} > 0) - \sigma(\mathcal{T} < 0)}{\sigma(\mathcal{T} > 0) + \sigma(\mathcal{T} < 0)},$$

$$\mathcal{T} = (\mathbf{p}_{e^-} \times \mathbf{p}_{\tau^-}) \cdot \mathbf{p}_{\tau^+},$$

- Clear signal of CP violation
- No constraint on Ωh^2 twofold ambiguity

Stau-bulk scenario

- In addition to precise determination of parameters at ILC need also some information on the rest of the spectrum
- LHC: scale of squarks and gluino, maybe whether Higgs (H/A) is heavy whether sleptons are heavy gauginos
- Small influence on Ωh^2 from sleptons if heavier than 250GeV
- No nearby Higgs resonance- otherwise strong influence on Ωh^2
- If only lower limit on Higgs/sleptons $\delta\Omega/\Omega$ < 7%

Other observables

- edm
 - Depend on selectron mass
 - Improving the sensitivity by 2 orders of magnitude probe most of parameter space of the model.
 - No direct impact on Ωh^2
- Heavy particles at colliders
 - Search for heavy Higgs at LHC (would only confirm that Higgs is irrelevant for DM annihilation not in the favourite channel bb-ττ)
 - Stop mass for mh
 - Heavy chargino/neutralino μ , tanβ: LHC cross sections are small would need LC >1.5TeV to produce some of the heavy Higgsinos
- Direct detection DM
- Indirect detection DM

Direct detection

- Direct detection new experimental limits every year Xenon/CDMS- 4x10⁻⁸pb
- SI: goal 10⁻¹⁰pb before 2018
- Dominated by Higgs exchange because squarks are heavy for bino LSP σ^{SI} small
- Detectable rate only for μ small
 - No signal $0.116 < \Omega h^2 < 0.17$

Conclusion

- The stau-bulk in the CPV-MSSM is example of a scenario where determination of masses AND couplings matter challenging for ILC
- Collider prediction $0.116 < \Omega h^2 < 0.19$
- Phases are important with mass measurement at ILC in real MSSM would conclude that relic density is too large: also search for CP violating signal in asymmetries or edm.