Beam-gas Bremsstrahlung and Coulomb Scattering in the ILC 150 random beam-gas brem. trajectories in the BDS using BDS2006c TURTLE ## Origin and Energy Distribution of Charged Beam-gas <u>Bremsstrahlung for Hits Near FD</u> # Origin and Energy Distribution of Charged Beam-gas <u>Bremsstrahlung within the IP Region</u> ## Origin and Energy Distribution of BGB Photons and Coulomb Electrons Hitting the FD Protection Collimator Coulomb electrons (all beam energy) #### **Summary of Hits/bunch and Hits/160 bunches (TPC) – 10 nTorr** Dec. 15, 2006 Hits/bunch Hits/160 bunches (TPC) | Hit
Location | Beam-gas
bremsstrahlung
(charged) | | Beam-gas
bremsstrahlung
(photons) | | Coulomb
scattering
(charged) | | |--|---|----------|---|----------------|------------------------------------|---------| | | Number | <e></e> | Number | <e></e> | Number | <e></e> | | FD
Protection
Collimator | 0.17
27.2 | 235 GeV | 0.056
9.0 | ~50 GeV | 0.009
1.4 | 250 GeV | | Inside F.D. | 0.006
1.0 | ~100 GeV | 0 | | 0 | - | | IP (± 3.0 m) | 0.009
1.4 | ~100 GeV | 0 | - | 0 | - | | Lumonosity
Monitor
(3.0 – 3.5 m) | 0.01
1.6 | ~100 GeV | 0 | - | 0 | - | Totals: FD protection collimator = 0.23/b, 37.6 TPC FD and IP region = 0.025/b, 4.0 TPC } 10 nTorr Beam-Gas Bremsstrahlung Electrons Hitting Beyond the Final Doublet. Average Energy = 0.4 E_{beam} , N = 0.025/bunch @ 10nT, N = 4.0 per TPC sensitive time ### **Summary for 10 nTorr**: - 1. Within the FD and the IP region there are 0.025 hits/bunch and 4.0 hits/160 bunches (TPC) at an average energy of about 100 GeV/hit originating 0 150 m from the IP. - 2. On the FD protection collimator there are 0.23 hits/bunch and 37.4 hits/160 bunches (TPC) at an average energy of about 240 GeV/hit originating 0 800 m from the IP. - 3. Need feedback from the detector groups on the effect of these hit rates on their detectors. - 4. Beyond 800 m from the IP the pressure could conceivably be at least an order of magnitude higher than 10 nTorr, pending look at BGB background in the Compton polarimeters and energy spectrometers.