Vertex Detector R&D

Ronald Lipton, Fermilab

Contents:

- Physics Requirements
- Technical Challenges
- R&D Efforts
 - Mechanical Studies
 - Sensor Development
 - Test Beams
- Summary

Physics Needs

ILC is designed to do precision physics:

- Higgs couplings
 - Requires excellent separation of b/c/light quark vertices
- Higgs self coupling (potential):

$$e^+e^- \rightarrow Z^0H^0H^0 \rightarrow qqbbbb$$

 $backgrounds: tt \rightarrow bb \csc s, ZZZ, ZZH$

- B quark ID within jets
- Forward-backward asymmetry
 - Flavor tagging
 - Vertex charge
 - Forward tracking

All of these (and many more) depend on precise tracking and vertexing. The ILC environment allows the deployment of a vertex detector of unprecedented power.

Ronald Lipton LCDRD review June 19,2007

KK graviton exchange with jet-charge info $\sqrt{s} = 500$ GeV, $\Lambda = 1.5$ TeV, 500 fb⁻¹(Hewett)

Optimizing Vertex Performance

Optimizing vertex performance has major impact on physics capabilities

- Inner radius
- Material
- Position resolution (<5 microns)
- Forward tracking

Parametric simulation assuming:

- 0.1% RL per layer
- 5 micron resolution
- 1.4 cm inner radius Varying each parameter

Luminosity factor as a function of radius for processes requiring vertex charge for 2 jets

(Hillert)

IP Resolution, 1 GeV track:

25

varying resolution
varying radiation length
Varying inner radius

Hit resolution (micron)or RL x 10^-3 or IR (mm)

Ronald Lipton LCDRD review June 19,2007

Detector Goals

- Good angular coverage with many layers close to IP, pattern recognition
- Excellent spacepoint precision (< 5 microns)
- Superb impact parameter resolution (5μm ⊕ 10μm/(p sin^{3/2}θ))
- Transparency (~0.1% X₀ per layer)
 - Average power constraint based on air cooling with minimal mass (<
 50 Watts)
- Integration over <150 bunch crossings (45 μsec)
- Electromagnetic Interference (EMI) immunity
- Moderately radiation hard (<1 MRad)
 <p>These goals require an unprecedented combination of high resolution, low mass & precise timing from the vertex detector.
 Made possible by rapid advances in semiconductor technology.

SLD VXD3

307 Mpixels 5 MHz \otimes 96 channels 0.4% X_0 / layer ~15 watts @ 190 K 3.9 µm point res.

Design Features

- Outer radius ~ 6 cm
- Barrel length ~ 14 cm
- Ladder widths 1-2 cm
- Disks to cover forward region

A bit larger than this

Ronald Lipton LCDRD review June 19,2007

Material

- To achieve ILC goals we must improve RL/layer by ~20 x
 - Low power
 - Thin detectors

Figure 33 VXD hit pattern and material summary as a function of polar angle.

Integration Time

- The sparse nature of the physics events and time structure of the ILC bunch trains allow readout of ALL of the hit information in a vertex detector
- Integration time needs set by inner layer beam-based occupancy - how many crossings do we integrate over?
- Better than 50μs resolution generally agreed (the more precise the better)
- Time is power (FE current, more clock cycles ...)
- Read out during or after bunch train
- Architecture differs by technology
 - Rolling shutter
 - Multiple analog samples
 - Explicit time stamps
 - Buffers per pixel

Mechanical Support

U. Washington/Fermilab

- U. Washington/Fermilab are investigating carbon fiber-based structures
 - Develop techniques for fabricating and handling thin-walled carbon fiber structures
 - Prototypes of carbon-fiber support structures
 - Various tooling for attaching support membranes to support structure and mounting silicon wafers on support structure
 - FEA analysis of mechanical and thermal behavior
 - Measurement of material properties (CF CTE)
- Fabricated and delivered to Fermilab
 - Three prototype half-shell structures for evaluation, testing and developing silicon mounting procedures
 - Assembly mandrel, end ring glue fixture and vacuum chuck for precision placement of silicon

Support FEA Studies

U. Washington

VTX Ladder Design & Testing LBL

Design, construction and characterization of a full ladder equipped with back-thinned CMOS pixel sensors in collaboration with STAR.

- STAR carrier: $50\mu m$ CFC+3.2mm RVC+ $50\mu m$ CFC (=0.11% X_0)
- Mechanical and thermal characterization of STAR prototype, study of heat removal using low-speed airflow

• FEA of prototype structures: (core-cooled Si/CF/RVC sandwich, Si/Al/RVC sandwich, CVD coated CF) in progress using data from surveys of 40 and 50 mm thin chips, first results promising, test of prototype in 2008

Thinning LBL, Fermilab

- LBL has thinned over 15 Mimosa CMOS MAPS chips, yield of functional chips~90%, Process reliable down to 40 μm
 - Study charge collection and S/N before/after back-thinning: MIMOSA 5 sensors
 - These sensors will be used in beam telescope
- Fermilab has thinned BTeV Fpix readout chips to 15 μm with ~75% yield, FPIX wafers to 20 μm

11

Sensor Technology

- Technologies being developed by the semiconductor industry are directly applicable to ILC vertex detectors
 - Thinning (standard for many applications)
 - Integrated sensors and CMOS (digital camera)
 - Focal plane sensor development "edgeless" sensors
 - "Virtual Wafer Fab" simulation software
 - Access to CMOS processing variants
- We can engineer detectors in ways we never could before.

Candidate Technologies

- **CCDs**
 - Column Parallel
 - ISIS
 - Split Column
 - Fine Pixel
- **CMOS Active Pixels**
 - Mimosa I-XII
 - INFN
 - LCRD 1-3 (LBNL)
- SOI
 - American Semiconductor/FNAL
 - LCRD-SOI (LBNL);
 - CAP5 (Hawaii)
 - KEK
 - SUCIMA
- 3D
 - VIP1 (FNAL)
- **DEPFET**

US work in red

Tier-1

Wafer-1

Detector

Handle Silicon

3D

550 550 800 800

High resistivity epitaxial layer (p)

SOI

Reset transistor : Source follower :

To column load

pixel #20 gate sense node (n+)

p+ shielding implant

substrate (p+)

CCD

Ronald Lipton LCDRD review June 19,2007

Architectures

	CMOS MAPS	CCD	DEPFET	SOI	3D
Rolling Shutter	Mimosa 1-N LDRD1,2	Normal CCD		LDRD-SOI	
Column (row) Parallel	Mimosa 8 LDRD3	CPCCD	DEPFET/ CURO/ SWITCHER		
Pipelined Storage	FAPS, Mimosa12 CAP	ISIS		CAP5	
Time Stamp	SLIM5, Chronopixel			ASI SBIR	VIP1

Chronopixel

Yale/Oregon/Sarnoff

Variant of CMOS active pixel

- Charge collection in thin (5-20μm epitaxial layer)
- Design Goals
 - Single bunch time stamp
 - 4 buffers/pixel
 - Deep depletion
 - Deep p-well to direct diffusion charge
 - Digital readout
- Depends on available technology
 50 μm pixels now scales to <20 μm in 45 nm technology.
 Thickness and resistivity of available epitaxial layers

Technology Roadmap: Macropixel size estimation vs. Mixed-signal Process Technologies

Chronopixel

Yale/Oregon/Sarnoff

- Completed Macropixel design last year
 - Key feature stored hit times
 - 645 transistors
 - Spice simulation verified design
 - TSMC 0.18 mm => ~50 mm pixel
 - Epi-layer only 7 μm
 - (Talking to JAZZ (15 mm epi-layer))
 - 90 nm => 20-25 μ m pixel
- January, 2007
 - Completed Chronopixel design
 - 2 buffers, with calibration
 - Deliverable tape for foundry
- This year
 - Fab 50 μm Chronopixel array
 - Demonstrate performance
 - Then, 10-15 mm pixel (45 nm tech.)

563 Transistors (2 buffers +calibration)

50 μm x 50 μm

16

CMOS MAPS

LBL

- Set of chips designed to explore pixel and electronics design variants
- LDRD1: First LBNL test structure
 - AMS 0.35 μm OPTO, 14 μm epilayer
 - Simple 3T pixels, serial analog output
 - 3 matrices with 10x10 $\mu m^2,\,20x20~\mu m^2$ and 40x40 μm^2 pixels
- LDRD-2: second prototype chip
 - AMS 0.35 μm OPTO, 14 μm epilayer
 - 20×20 μm² pitch with in-pixel CDS: signal and pedestal level stored on pixel capacitors
 - $-3\times3~\mu\text{m}^2$ and $5\times5~\mu\text{m}^2$ diodes
- LDRD-3: next prototype in AMS 0.35 μm OPTO, to be submitted in June/July
 - In-pixel CDS
 - 5-bit successive approximation, fully-differential ADCs @ 300
 MHz at the end of each column

CAPS CMOS Pixels

Hawaii

Part of development also aimed at super Belle In-pixel charge storage/time sliced

CAP1/2 [MAPS technology] Studies

Characterization of CAP1 in test beam

Study of radiation hardness/storage

Storage density/max. pipeline depth studies

CAP3 "full size" Detector

Development of laser scan system for systematic studies

Systematic scan and study of transfer rate and signal uniformity

Non-uniformity and transfer limitations observed

- CAP4 AMS 0.35um Opto
 - Study of new analog storage/readout evaluation started

8 deep mini-pipeline in each cell

Ronald Lipton LCDRD review June 19,2007

SOI Fermilab, LBL, Hawaii

Laser Annealed Ohmic contact

- SOI is based on a thin active circuit layer on an insulating substrate. Modern technology utilizes ~200 nm of silicon on a "buried" oxide (BOX) which is carried on a "handle" wafer.
- The handle wafer can be high quality, detector grade silicon, which opens the
 possibility of integration of electronics and fully depleted detectors in a single wafer
 with very fine pitch and little additional processing.
- Two processes available: OKI (through KEK), and American Semiconductor (SBIR, Cypress)

SOI

Fermilab, LBL, Hawaii

Several submissions based on OKI/KEK 0.15 micron SOI process

- LBL has designed binary and analog 10 μm pixels in the OKI 0.18 micron process.
 - Variety of diode sizes, transistor types.
- Hawaii CAP5
 - Debugged process for non-Japanese
 - Problems with backside bias (back gate problem)
- Second CAP submission
 - 4x larger die
 - Study process spread
 - Evaluate space-time correlation

Analog

Digital

SOI

Fermilab

- FNAL has designed a 12 bit 26 μm pitch imaging chip in the OKI process
 - Back and being tested
- FNAL has designed a 20 μm pitch ILC vertex chip in the ASI 0.18 μm process (SBIR funded)
 - Single bunch analog/digital time stamp
 - Immunity to back gate, analogdigital coupling and radiation effects due to dual gated "Flexfet" transistor and pinning layer
 - Fabrication depends on phase II SBIR

3D Circuits

Fermilab

- A 3D chip is generally referred to as a chip comprised of 2 or more layers of active semiconductor devices that have been thinned, bonded and interconnected to form a "monolithic" circuit.
- The layers can be fabricated in different processes.
- Industry is moving toward 3D to improve circuit performance.
 - Reduce R, L, C for higher speed
 - Reduce chip I/O pads
 - Provide increased functionality
 - Reduce interconnect power and crosstalk
- Utilizes technology developed for Silicon-on-Insulator devices

Conventional MAPS 4 Pixel Layout

3D 4 Pixel Layout

MIT-LL 3D Process: Three levels of transistors, 11 levels of metal in a total vertical height of only 2222m. 3D chip VIP1, submitted to DARPA funded MIT-LL 0.18 micron 3D process due back August

Key features: Analog pulse height, sparse readout, high resolution time stamps. Front end power $\sim 1875 \, \mu W/mm^2$ (before cycling), 175 transistors in 20 μ m pixel.

Thinned, Edgeless Sensors

Fermilab/Cornell

Sensors sensitive to the edge can be fabricated by a combination of trench etching, thinning, and laser annealing

- Produce a set of detectors thinned to 50-100 microns at MIT-LL for beam and probe tests.
 - Validate process
 - Understand performance
 - Measure the actual dead region in a test beam
- Parts available for prototype vertex structures
- Masks designed at FNAL
 - Strip detectors (12.5 cm and ~2 cm)
 - FPiX2 pixel detectors (beam tests)
 - Detectors to mate to 3D chip
 - Due back September
- Laser annealing studies at Cornell

Ronald Lipton LCDRD review June 19,2007

TCAD Simulation

Crucial to understanding sensor tech.

- LBL back gate effects in SOI
- Oregon depletion of complex 3D structure
- FNAL analog-digital coupling in SOI

Ronald Lipton June 19,2007

Test Beams

LBL

- The LBNL Thin Pixel Pilot Telescope
 - Layout: 3 layers of thin Mimosa 5 sensors (17μm pixels) (40μm + 50μm + 50μ m) + reference detector
- Beam: 1.5 GeV e- from ALS booster at BTS simulate ILC track density
- First beam telescope based on thin pixel sensors
- Prototype for proposed FNAL MBTF telescope & T966
- System test of multi-M pixel detector in realistic conditions.

Ronald Lipton LCDRD review June 19,2007

Test Beams and Irradiation

Beam Test at FNAL MBTF 120 GeV p beam-line (T-966) (UC Berkeley /LBNL/INFN Padova/Purdue U Collaboration)

- Deploy two pixel beam telescope:
 - TPPT-2 telescope: 4 layers of 50μm thick MIMOSA-5 sensors,
 - LDRD telescope: 4 layers of LDRD-2 sensors,
 - ILC-like geometry, extrapolation resolution on 1st plane ~ 1mm
- T943 (Varner) measure CMOS MAPS

- Radiation Hardness tests @ 88" Cyclotron:
 - 30 MeV p up to 1.45x10¹² p/cm²
 - 1-20 Mev n, no change up to 2x10¹¹ n/cm²

irradiation	TID / NIEL fluence	ΔV_{th}	g _m	I _{Leak} in int. gate at RT(*)
gamma 60Co	913 krad / ~ 0	~-4V	unchanged	156 fA
neutron	~ 0 / 2.4x10 ¹¹ n/cm ²	~0	unchanged	1.4 pA
proton	283krad / 3x1012 n/cm2	~-5V	~ -15%	26 pA

Test Beams - EMI Studies

(SLAC/Oregon)

SLD saw significant electromagnetic interference associated with the SLC beam crossings

- amplifiers saturate, PLL lost lock
- This can have a major effect on vertex (and all electronics) design
 - Better to read out between bunches
 - Avoid active electronics during train

End Station A study of beam-induced EMI

- Antennas placed near (~1 m) gaps observed pulses of EMI in the high MHz range with strengths up to ~20 V/m.
- The pulse amplitudes varied in proportion to the bunch charge, independent of the bunch length.

(Sinev)

- A single layer of 5mil aluminum foil placed over the ceramic gap and clamped at both ends reduced the signal amplitude by >x10 (eliminated?)
- A 1 cm hole in the al was enough to cause the PLL to fail, failures stopped at .6 cm

Horizontal and Vertical Collaboration

- Internationally, there are a number of groups focusing on sensor technology
 - Most tend to work independently on each technology
 - Non-US groups had a head start but we are catching up (passing?)
- These same groups collaborate on more general aspects of the problem
 - General mechanical meetings (FNAL/UW/LCFI/MPI/Valencia/LBL...)
 - Overlapping technologies
 - 3D development at FNAL/MPI
 - SOI development at FNAL/LBL/Japan
 - CMOS MAPs work at LBL/IRES/INFN/...
 - Work on detector concepts many groups collaborate on SID, LDC vertex design.

All groups feel strongly that promising technologies should continue to be developed until a solution is demonstrated.

There is substantial spinoff potential for X-ray, electron microscopy, imaging and sLHC. Drives many of the overall lab efforts.

Accomplishments

Mechanical

- Completed prototype support structures which meet ILC goals
- Initial studies of ladder design and cooling
- Design of vertex air cooling within the SiD concept
- Silicon thinning and handling studies
- Inter-regional vertex design meetings
- Measure CF CTE

Sensors

- Completed chronopixel design
- CMOS MAPs test devices (LDRD, CAPs)
- First SOI-based devices from OKI, SOI design for American Semiconductor
- First 3D designs
- Demonstrated laser annealing of thinned sensors
- Conceptual sensor designs which meet ILC power, position and time resolution goals

Test Beam

- Improved understanding of EMI sources and effects
- Built telescopes based on CMOS MAPS sensors
- Beam tests at ALS
- Beam tests at FNAL

Near Future Goals

Mechanical

- Populate and test support structures
- Understand sensor flatness requirements and solutions
- Air cooling studies
- Study interconnection issues

Sensors

- Chronopixel prototype testing
- CMOS MAPs test devices
- Test SOI-based devices, second round of SOI submissions, ASI SBIR?
- Test 3D chips integrated with thinned sensors, second round of MIT-LL chips
- Complete laser annealing process development

Power

- Begin to study serial powering and DC/DC conversion Serial power chip
- Study pulsed power design issues

Test Beam

- Final round of EMI tests at SLAC
- Beam tests of prototypes at FNAL

Conclusions

- Although the US community has come into this work later than our European counterparts we are making our mark
 - New technologies (SOI, 3D)
 - Mechanical and infrastructure expertise
 - Increasing sophistication
- We need to maintain this momentum with the next generation of devices going to test beams next year.
- The next steps will include integration of sensor, support, and power delivery technologies aimed at demonstration of prototype modules that meet ILC goals by 2010-2012.

There is great excitement in the US vertex community based on the promise of new vertex detector technologies and ILC physics. I hope I have conveyed some of this.