

Recent Ingrid Studies and DESY Test-Beam Results with Octopuce

A. Chaus, D. Attie, P. Colas, M. Titov CEA Saclay, Irfu/SPP, France

OUTLINE:

- "Octopuce" Uniformity Studies in the Laboratory
- DESY Test-Beam Track Reconstruction with Octopuce
- Tests of IZM-3 InGrids
- Future InGrid Tests using Low Energy Electrons from PHIL at LAL

International Workshop on Future Linear Colliders
University of Texas at Arlington, October 22-26, 2012

Integrated Electronics: Pixel Readout of Micro-Pattern Gas Detectors

3D Gaseous Pixel Detector → 2D (CMOS pixel chip readout) x 1D (drift time)

Bump bond pads for Si-pixel Detectors - Timepix or Medipix2 (256 × 256 pixels of size 55 × 55 µm2) serve as charge collection pads.

Through POST-PROCESSING <u>INTEGRATE</u> <u>MICROMEGAS</u> directly <u>on top of CMOS</u> chip

- 1. Formation of protection layer (e.g. Si3N4)
- 2. Deposition of spacer material (e.g. SU8)
- 3. Deposition of the Grid material

Each pixel can be set to:

- TOT ≈ integrated charge
- TIME = Time between hit and shutter end

4. Formation of structure "support" / grid

"InGrid' Technology and "Driving" Developments

2005: Single "InGrid" Production

2009: "InGrid" Production on a 3 x 3 Timepix Matrix

2011: Major Step Forward → InGrid Production on a wafer level (107 chips)

WD = 8 mm

EHT = 20.00 kV

Fraunhofer IZM

Chamber = 1.31e-003 Pa

The "Octopuce" (2009)

Non homogeneous area on the mesh of different chips

HV connections

"Grid irragularities"

Octopuce Studies & Fe55: Homogeneous Irradiation

Fe⁵⁵ Studies (26/07/2012):

He/Iso 80/20 Vmesh=390 V Vdrift =3000 V

Integrated picture for all 8 chips:

(discontinuity = distance between pixels in the cluster)

Octopuce: Uniformity of the Response (1)

THRESHOLD = 1000 COUNTS

Chip 5 Chip 5 (chip 4) (chip 4)

THRESHOLD = 2000 COUNTS

THRESHOLD = 4000 COUNTS

Non-sensitive (~ 1.5 mm) areas between chips

Fe⁵⁵ Studies (26/07/2012):

He/Iso 80/20 Vmesh=390 V Vdrift =3000 V

Octopuce: Uniformity of the Response (II)

THRESHOLD = 6000 COUNTS

THRESHOLD = 8000 COUNTS

THRESHOLD = 10000 COUNTS

Non-sensitive (~ 1.5 mm) areas between chips:

More studies required to understand:

- → if "dead" areas between chips decreases with increased drift field;
- "dead" area on the outer edge as a function of the guard voltage

Octopuce: Cluster Size Distribution

Single electron sensitivity is very high for all (but 1 and 4) chips

Expected number of primary electrons in He/Iso (80/20) ~ 165

Octopuce: Total Cluster Charge

Chips 1 and 4 have a lower response (same trend as for the cluster size distribution) →

- Difference in amplification gap
- > Difference in threshold (too big to explain differences between 1 &4 and others)

After equalization:

Chip number	Threshold level
1	337
2	335
3	340
4	335
5	330
6	327
7	330
8	320

Some differences in amplification gaps between different chips are seen by microscope (studies are not conclusive, might come from different thickness of the glue under the chips)

DESY Test-Beam with Octopuce & Large Prototype TPC (December 2010)

"The Octopuce" in the Large Prototype TPC

- Chips on a mezzanine board making wire bonding easier
- Large Prototype compatible
- Heat dissipator

Mother board

Mezzanine board

Octopuce in the Large Prototype TPC at 0 T

MAFalda: Medipix Analysis Framework

ROOT based analysis package developed by John Idarraga (LAL)

- C++ classes including processors:
 - OctoCEA (define in a few minutes)
 - Pattern recognition of tracks for low threshold

MAFalda: Cluster Finding and Track Segments (1)

- ➤ Form cluster from the pixels with "discontinuity" < 40 pixels (each cluster should contain > 12 pixels)
- > Calculate the linear regression with all points in the cluster (red dotted line)
- ➤ Calculate residuals from the red line to each point (if > 80 % the points are within 20 pixels this is the "track segment"!

MAFalda: Cluster Finding and Track Segments (II)

Check incident angles of track segments

→ Take segments within +/-10 degrees (electron beam is in the horizontal direction)

Number of segments per reconstructed track

(most tracks consists of 2-3 segments):

Track Reconstruction

Reconstruct track from track segments (if more than 2 segments):

- > Apply data quality cuts to make sure all segments correspond to a given track
- > Perform a linear regression for all pixels on a track -> reconstructed track (blue dotted line)

Track Reconstruction: Residuals

An unbiased estimate of the single point resolution: $\sigma = \text{Sqrt}(\sigma 1 * \sigma 2)$:

Perform fit to all pixels and calculate the distance between each pixel and the position of the point of closest approach along the fitted track:

 σ 1 = Gaussian fit, when all pixels are included in the track fit

 σ 2 = Gaussian fit, omitting pixel under consideration from the track fit

DESY Test-Beam: Track Residuals

Summary of residuals ($\sigma = \text{sqrt}(\sigma 1 * \sigma 2)$) for different Z-coordinates:

(corresponds to the different positions of electron beam passing through the Large Prototype TPC)

DESY Test-Beam: Track Residuals as a function of Z (Large Prototype TPC)

Very low statistics, behavior needs to be understood

Saday Micro-TPC with Timepix

- Two micro-TPC boxes have been built
- Drift distance in micro-TPC (~ 10 cm) is large enough to allow study of single electron response from Fe⁵⁵ source

Studies of new IZM-3 InGrids in the Saclay micro-TPC

2011: Major Step Forward → InGrid Production on a wafer level 2013: 3rd IZM production run to post-process Timepix chips on a wafer level

- ➤ Received 6 IZM-3 InGrids in Saclay (earlier studies with IZM-3 InGrids have been performed in Bonn, NIKHEF)
- Four chips are mounted on PCB (one does not work)

One InGrid is tested → in general, good behavior

Proposal of a Flexible Detector Setup using Low Energy Electrons from PHIL at LAL

PHIL provides electrons with momentum 5 MeV/c and 109 particles per bunch

Goal: obtain samples of "monochromatic" electrons

- with energy between 1 and 5 MeV and energy spread of better than 10%
- with adjustable intensity down to 10⁴ electrons per bunch

Study dE/dx by cluster counting using InGrid detectors the electron range 1-5 MeV

(earlier simulation results by M. Hauschild & NIKHEF experimental studies)

Joint proposal LAL & IRFU
LAL contribution from S. Barsuk, L. Burmistrov, H. Monard, A. Variola

Spectrometer to sample "monochromatic" low energy electrons

Setup idea:

- Use electrons from PHIL
- ☐ Reduce energy/intensity using Al plug
- ☐ Select unique direction for electrons passing the plug with collimator 1
- ☐ Select required energy by half-turn of electron in the magnetic field (position of collimator 2)
- ☐ Adjust intensity/energy spread using collimator 2, positioned in front of tested detector

Momentum and angular spectra of electrons passing through the Al plug, depending on the plug thickness: Geant4 simulation

