Polarization issues

A. Ushakov

International Workshop on Future Linear Colliders

University of Texas at Arlington, USA 25 October 2012

Outline

- ILC e⁺ source scheme and parameters
- Simulation results for RDR undulator
 - e⁺ yield and polarization
 - Energy deposition and thermal stress in target
- Source upgrade for 1 TeV CM energy
- Source upgrade for low-energy (∼ 100 GeV e[−]) operation
- Summary

e+ Source Model (PPS-Sim)

- RDR helical undulator (NbTi): $\lambda = 11.5$ mm, $K_{max} = 0.92$, 231 m active magnet length (3.5 m module), 320 m total lattice length, 412 m to target
- Photon collimator (optional)
- Target: Ti6Al4V, 0.4 X₀ thickness, Ø1 m, 100 m/s rot. speed
- Pulsed flux concentrator (FC): $B_0 = 3.2 \text{ T}$, $B_{end} = 0.5 \text{ T}$, $L_{FC} = 12 \text{ cm}$
- RF Cavity: 1.3 GHz, $E_{max} = 14.5 \text{ MeV/m}$
- DR Acceptance: $\Delta z \leq 34.6$ mm, $\epsilon_{nx} + \epsilon_{ny} \leq 70$ mm rad (cuts at 125 MeV)

Positron Yield and Polarization vs e- Beam Energy

Source should provide 1.5 e⁺/e⁻:

$E_{e^{-}}$ [GeV]]	L_u [m]	$P_{e^{+}}$ [%]	f [Hz]
100	599.6	33.9	10
125	242.9	32.8	10
150	130.3	30.5	5
175	85.3	29.0	5
250	41.1	22.2	5
500	23.6	3.9	4

- 250 GeV: 30% e⁺ polarization can be achieved by reduction of undulator field (K = 0.45)
- 130-250 GeV: 60% e⁺ polarization can be achieved by using of a photon collimator
- 500 GeV: an other undulator is needed to improve the polarization and relax a heat load problem
- 100-130 GeV: an other short period/high field undulator (Nb3Sn) can be a good alternative

Photon Collimator for Positron Source at 250 GeV

Yield and Polarization vs Aperture Radius of Collimator

- $P_{e^+} = 30\%$ for $R_c = 2 \text{ mm}$
- P_{e+} = 59% for R_c= 0.7 mm, 80% of photons are absorbed in collimator, 132 kW

Intensity and Energy of Photons on Target

250 GeV e^- , K = 0.92

- $L_u = 41.1$ m wo collimator,
- $L_u = 143.5$ m with collimator $R_c = 0.7$ mm

Photon Density on Target after Bunch

Energy Distribution of Photons

Energy Deposition in Target (FLUKA)

250 GeV e⁻, K = 0.92, $R_c = 0.7$ mm, 554 ns bunch spacing, 100 m/s rot. speed

Energy Deposition after Bunch

 $E_{max} = 1.6 \text{ J/(g bunch)}$

Energy Deposition after Bunch Train

 $E_{max} = 52 \text{ J/(g train)}$

Bunch Overlapping Factor $\equiv E_{max Train}/E_{max Bunch} = 32.5$

Temperature Distribution and Stress in Target

250 GeV e⁻, K = 0.92, $L_u = 143.5$ m (active), $R_c = 0.7$ mm

Temperature Map after Bunch Train

Max. Dynamic Stress in Target

 $\Delta T_{max} \simeq 100 \text{ K}$

 $\sigma_{max} \simeq$ 160 MPa

www.matweb.com – Ti6Al4V (Grade 5), Annealed: Tensile Yield Strength = **880 MPa**, Fatigue Strength = **510 MPa** at 10⁷ Cycles

Energy Deposition in Target. K = 0.92, we collimator

Will target withstand the heat load induced by photons generated in RDR undulator at 500 GeV e⁻?

Energy Deposition after Bunch

 $E_{max} = 3.5 \text{ J/(g bunch)}$

Energy Deposition after Bunch Train

 $E_{max} = 129 \text{ J/(g train)}$

Bunch Overlapping Factor = 37.2

Temperature Distribution in Target

500 GeV e⁻, K = 0.92, $L_U = 24.5$ m (active), we collimator

Temperature Map after Bunch Train

 $\Delta T_{max} \simeq 245 \text{ K}$

Max. Dynamic Stress after Bunch Train

 $\sigma_{max} \simeq 310 \text{ MPa}$

Upgrade of e⁺ Source for 1 TeV Center-of-Mass Energy

- NbTi undulator with period of 4.3 cm (proposed by ANL group)
- K is varied ($K = 1 \Leftrightarrow B$ -field = 0.25 T)
- Space between the end of undulator and target is 412 m
- Maximal active undulator length is 231 m
- Active length of undulator module is 11 m
- Ti6Al4V target with thickness of 0.4 X₀
- Pulsed flux concentrator: max. field on axis is 3.2 T
- DR acceptance:
 - long. bunch size ≤ 34.6 mm
 - $\epsilon_{\textit{nx}} + \epsilon_{\textit{ny}} \leq 70 \text{ mm rad}$

Photon Yield and Energy vs K value

Photon Yield vs K-value

Photon Energy vs K-value

Photon Energy Spectra vs K value

Energy Distribution for K = 0.7

Energy Distribution for K = 2.5

e⁺ Polarization vs K for Source wo Photon Collimator

K	# Modules	e+ Yield [e+/e-]
0.7	21	1.564
0.8	16	1.500
1.0	11	1.521
1.5	6	1.586
2.0	4	1.655
2.5	3	1.688

Length of undulator module is 11 $\rm m$

blue numbers – required active undulator length [m]

Max. polarization without collimator is about 25% for K = 0.7

Photon Power and Spot Size on Target (wo Collimator)

 $1.74 \cdot 10^{10}$ e⁻/bunch, 2450 bunches/train, 4 Hz, 1.5 e⁺/e⁻ at DR

Mean Radius of Photons on Target

Polarization vs K for Source with Photon Collimator

K	# Modules	e+ Yield [e+/e-]
0.8	20	1.556
1.0	16	1.507
1.5	13	1.523
2.0	12	1.499
2.5	16	1.511

blue numbers - required active undulator length [m]
red numbers - aperture radius of collimator [mm]

54% e⁺ polarization can be achieved for source with K = 2.5 and $R_c = 0.9$ mm

Energy Deposition in Target

500 GeV e⁻, λ = 4.3 cm, K = 2.5, L_u = 176 m, R_c = 0.9 mm 366 ns bunch spacing, 100 m/s rot. speed

Energy Deposition after Bunch

 $E_{max} = 1.2 \text{ J/(g bunch)}$

Energy Deposition after Bunch Train

 $E_{max} = 73 \text{ J/(g train)}$

Bunch Overlapping Factor = 60.7

Temperature Distribution in Target

Temperature Map after Bunch Train, wo heat diffusion during the pulse

 $\Delta T_{max} \simeq 140 \text{ K}$

Temperature Map after Bunch Train, with heat diffusion during the pulse

 $\Delta T_{max} \simeq 125 \text{ K}$

Thermal Stress in Target (Imported Temperature)

Static Stress

 $\sigma_{max} \simeq$ 82 MPa

Max. Dynamic Stress

 $\sigma_{max} \simeq$ 234 MPa

Thermal Stress in Target (Imported Heat)

Static Stress

 $\sigma_{max} \simeq 77 \text{ MPa}$

Max. Dynamic Stress

 $\sigma_{max} \simeq$ 224 MPa

e⁺ Source with Nb3Sn Undulator

Parameters of e⁺ source with a **short period**, **high field undulator**:

- Nb3Sn undulator with period of 0.9 cm (STFC, EuCARD project)
 Tom Bradshaw, Aug 2011: "The wire is a problem commercially available wire is unstable at low fields ..."
- Max B-field on axis 1.54 T \Rightarrow $K \simeq 1.3$
- Maximal active undulator length is 231 m
- Space between the end of undulator and target is 412 m
- Ti6Al4V target with thickness of 0.4 X₀
- Pulsed flux concentrator: max. field on axis is 3.2 T
- DR acceptance:
 - long. bunch size ≤ 34.6 mm
 - $\epsilon_{nx} + \epsilon_{ny} \leq 70 \text{ mm rad}$

e+ Yield and Polarization without Collimator

231 m Undulator

 $P_{e^+} \approx 32\%$ for K=1

 $P_{e^+} \approx 37\%$ for K = 0.7

e⁺ Yield and Polarization with Collimator at 125 GeV

 $P_{e^+} pprox$ 60% for $R_c =$ 2.2 mm

Fraction of Photons on Target

Collimator with $R_c = 2.2$ mm absorbs 75% of photons

Power Deposited in Collimator and Target at 125 GeV

Power Deposited in Collimator and Target, 231 m Undulator

Power Deposited in Collimator and Target, 1.5 e⁺/e⁻

Heat load in target/collimator and thermal stress have to be studied

Summary

- ILC e⁺ source with 231 m RDR undulator provides 1.5 e⁺/e⁻ in energy range between 130 GeV and 250 GeV. e⁺ polarization can be kept at 30% by proper choice of undulator field.
- To increase e⁺ polarization of source with RDR undulator up to 60% a photon collimator with the smallest aperture radius of 0.7 mm is needed.
 - Average deposited power in collimator is up to 130 kW.
 - Peak thermal tress in target is about 160 MPa.
- Source for 1 TeV upgrade using a 4.3 cm period NbTi undulator can generate a beam having
 - 25% polarization with undulator K = 0.7 and without collimator,
 - 54% polarization with undulator K=2.5 and 0.9 mm apertures radius of collimator. Peak thermal tress in target is about 230 MPa.
- Source with Nb3Sn undulator having 9 mm period can
 - operate down to 100 GeV e⁻ energy,
 - generate e⁺ beam with 60% polarization in case of using 125 GeV drive beam and collimator with 2.2 mm apertures radius.