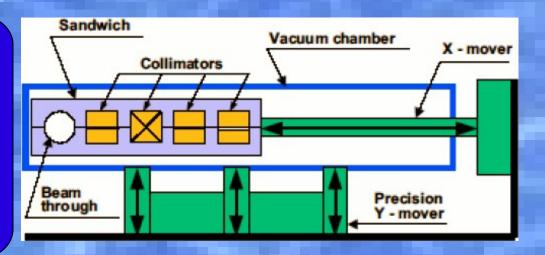
Studies at SLAC's ESA of the transverse kicks due to collimator wakefields

Stephen Molloy, Mike Woods, Ray Arnold, SLAC
Nigel Watson, Mark Slater, Birmingham
Luis Fernandez, Carl Beard, Daresbury Lab
Jonny Smith, Lancaster
Justin Greenhalgh, George Ellwood, RAL
Adriana Bungau, Roger Barlow, Manchester

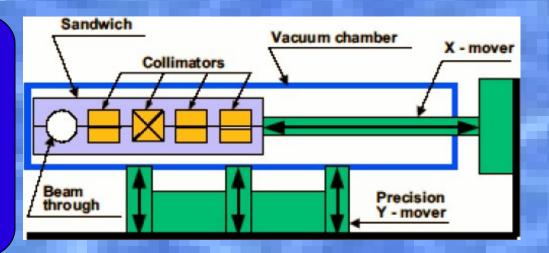
WakeFest 2007,

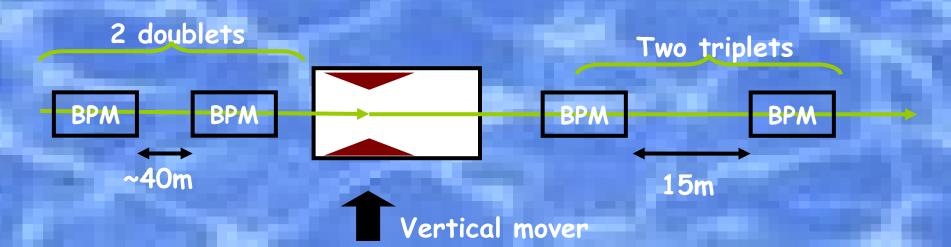

(also given at IRENG07, SLAC, 18th Sept, 2007)

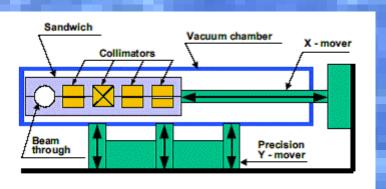
Motivation for Measurement

- Collimators near ILC IR will cause wakefields
 - Amplify incoming jitter.
 - Dilute emittance.
 - Reduce luminosity.
- Previous studies have shown the complexity of analytical calculations, even in simple cases.
- Goal is to measure the transverse kick for a range of collimator specs, and compare with simulations.
 - Try to improve agreement to ~10%.

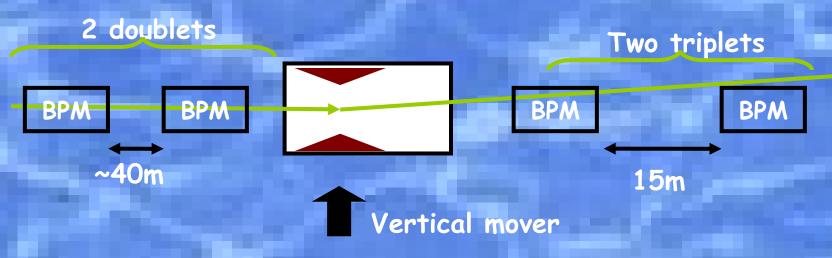
Experimental Setup

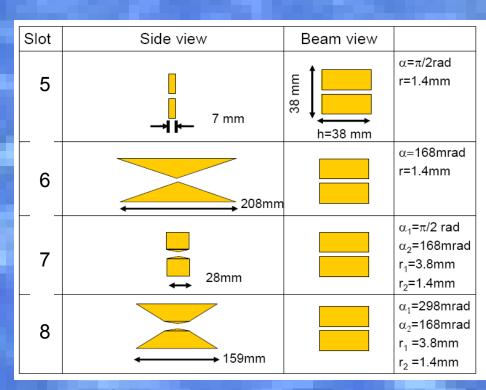

Beam Energy	28.5 GeV
Charge	~1.5e10
Bunch Length	0.3 – 1 mm
x Size	~1 mm
y Size	~100 um
	Charge Bunch Length x Size


- Collimators placed in wakefield 'sandwich'.
 - Five slots, allowing four collimators plus extra slot for uninterrupted beam operation.
- Collimator to be tested inserted using X-mover.
- FFTB magnet controllers allow control in y, z, and dy/dz.
 - Readbacks give micron-level position information.


Experimental Setup

Beam Energy	28.5 GeV
Charge	~1.5e10
Bunch Length	0.3 – 1 mm
x Size	~1 mm
y Size	~100 um

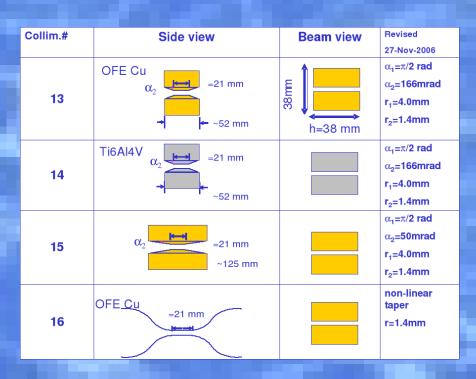

Concept of Experiment



Concept of Experiment

Collimators (Run 1)

Slot	Side view	Beam view	
1	α r=1/2 gate	₩ h=38 mm	α=335mrad r=1.9mm
2			α=335mrad r=1.4mm
3	L=1000 mm		α=335mrad r=1.4mm
4	→ ← 7mm		α=π/2rad r=3.8mm


- Collimator #1 is identical to one from a previous test.
- Analytical prediction for #7 and #8 is identical, but 3D simulation hints at differences.
- #3 will have a much larger resistive component than the others.
- This set explores a wide range of taper angles.

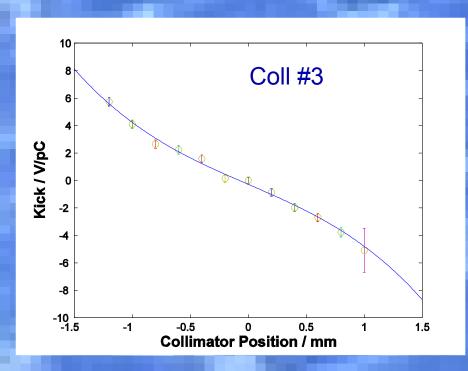
Collimators (Run 1)

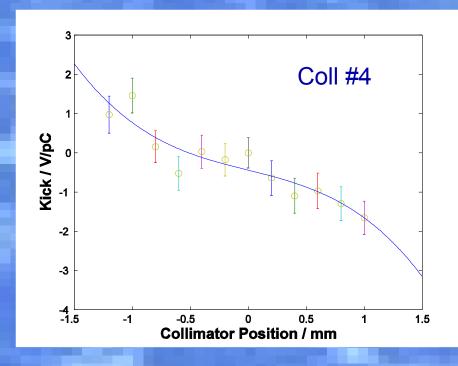
Collimators (Run 2)

Collim.#	Side view	Beam view	Revised
Collin.#			27-Nov-2006
	~211mm	1	α=166mrad
6	1.4mm	38 mm	r=1.4mm
6			(1/2 gap)
		h=38 mm	
10	=21mm		α=166mrad
			r =1.4mm
			a. 166marad
	α		α=166mrad
11	=21mm		r =1.4mm
12	=21mm		α=166mrad
			r=1.4mm

- Collimator #6 identical to #6 from Run 1.
- This set investigates the effect of material and surface finish on the kick.
- #16 tested a smooth impedance change.

Collimators (Run 2) Cu, no flat top Roughened surface Ti polished 50mrad taper Polished Cu (pre-polishing) All fabrication/design aspects: George Ellwood, Joe O'Dell, Justin Greenhalgh (RAL)


Collimators (Run 2)



Collimator 16

Nigel Watson / Birmingham

Data Analysis

- Kick should be odd function.
- Fit data to 3rd-order polynomial, with quadratic term set to zero.
- Kick factor is the linear term.

Analytical Prediction

Geometric wake

$$\left[\alpha = \theta_T b_1 / \sigma_Z\right]$$

For tapered collimators, the prediction depends on the "regime".

- α << 1 inductive regime
- $\alpha >> 1$ diffractive regime

Typical values in our experiment

$$\theta_{T}$$
=324, 289, 166, 50 mrad

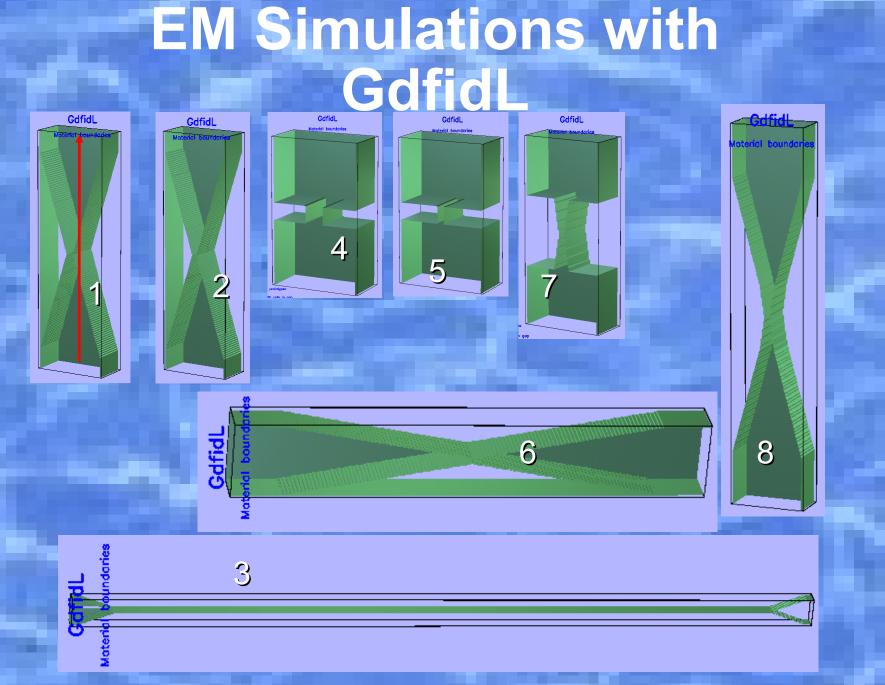
$$b_1 = 4.0, 1.4 \text{ mm}$$

$$\sigma_7 = 1.0 - 0.3 \text{ mm}$$

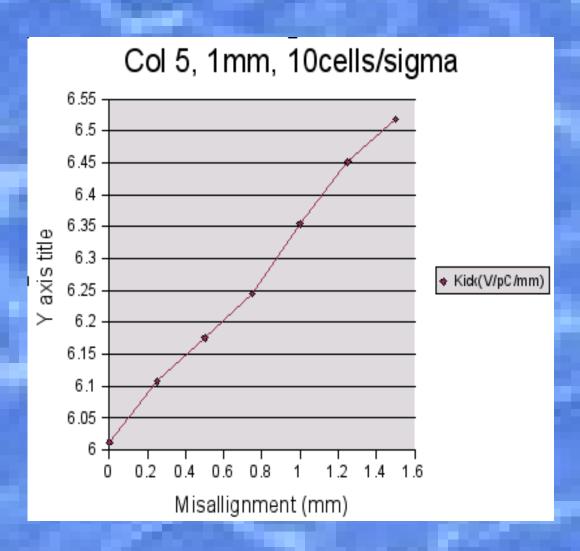
 $\alpha = 1 - 30$ – Collimators are in the intermediate or diffractive regimes.

$$K = \frac{1}{4\pi\varepsilon_0 b_1^2}$$

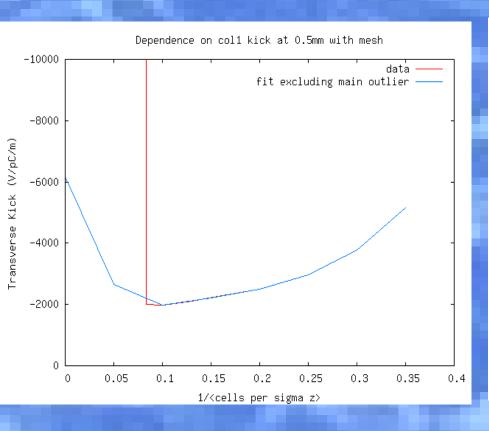
$$\left(\kappa = 1.35 \frac{1}{4 \pi \varepsilon_0} \frac{\sqrt{\alpha}}{b_1^2}\right)$$

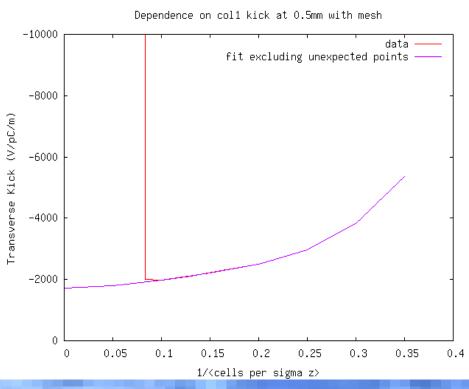

Resistive wake

Flat collimator


$$\kappa = F_G \frac{\sqrt{2}}{\pi} \frac{r_e m_e c^2}{e^2} \frac{L}{r^3} \sqrt{\frac{1}{Z_0 \sigma \sigma_z}},$$

Tapered collimator


$$\kappa = F_G \frac{\sqrt{2}}{\pi} \frac{r_e m_e c^2}{e^2} \frac{1}{r_1^2 \tan \alpha} \sqrt{\frac{1}{Z_0 \sigma \sigma_z}}$$



Misalignment of spoiler jaws

Problem...

Results

Predictions made for 0.5 mm bunch length.

3D modelling does **not** include resistive effects.

Coll.	Measured Kick Factor / V/pC/mm (Linear Fit)	Measured Kick Factor / V/pC/mm (Linear & Cubic Fit)	Analytic Prediction Kick Factor V/pC/mm	3-D Modeling Prediction Kick Factor V/pC/mm
1	$1.4 \pm 0.1 (1.0)$	$1.2 \pm 0.3 (1.0)$	2.27	1.63 ± 0.37
2	$1.4 \pm 0.1 (1.3)$	$1.2 \pm 0.3 (1.4)$	4.63	2.88 ± 0.84
3	$4.4 \pm 0.1 (1.5)$	$3.7 \pm 0.3 (0.8)$	5.25	5.81 ± 0.94
4	$0.9 \pm 0.2 (0.8)$	$0.5 \pm 0.4 (0.8)$	0.56	0.8
5	$3.7 \pm 0.1 (7.9)$	$4.9 \pm 0.2 (2.6)$	4.59	6.8
6	$0.9 \pm 0.1 (0.9)$	$0.9 \pm 0.3 (1.0)$	4.65	2.12 ± 1.14
7	$1.7 \pm 0.1 (0.7)$	$2.2 \pm 0.3 (0.5)$	4.59	2.87 ± 0.53
8	1.7 ± 0.3 (2.0)	1.7 ± 0.3 (2.2)	4.59	2.39 ± 0.89
13		$4.1 \pm 0.4 (0.8)$		3.57 ± 0.98
14		$2.6 \pm 0.4 (1.0)$		3.57 ± 0.98
15		2.0 ± 0.3 (1.8)		2.51 ± 1.16
16		$1.3 \pm 0.3 (1.0)$		2.35 ± 1.50

- Good agreement with PT's previous measurement of #1.
- Analysis not yet complete on all collimators.
- Some anomalies,
 - Why do #1 and #2 have the same measured kick factor?
 - Why is the measurement for #14 lower than #13?

Further Work

- Determine maximum kick allowable in the different ILC parameter sets.
 - Include collimator wake kicks in BDS tracking studies.
 - Enhance analytical prediction to allow fast turnaround between new collimator suggestion and tracking studies.
- Determine reasons for disagreement between experiment and simulation.
 - Necessary to add resistive wake to simulations?