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Concept of Transfer Map

element segment plane

direction of propagating

AS s,

X X Z(Sz)=dl,_>2(2(81)).

Py Px
2(s)=| o (fz 12 |p | ~HS) ]

abbreviated map notation

B s

A set (six) of functions of canonical coordinates. It's called symplectic
if its Jacob is symplectic.
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Concatenation of Maps

propagating

Element 2 direction

Element 1

|

|

AS AS

s ! S, 2 Ss

If we have the transfer map for each individual elements:
2(32 )= dt., (Z(Sl ),
Z(S3 ) — d‘lz—w (Z(Sz ))
Then the transfer map for the combined elements is given by
Z(SB ) — d17—>2 © dzz—wl(z(sl )) = d12—>3 (d17—>22(81 ))1

d1 1—53 nested functions
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Taylor Series and Exponential Lie Operator

element segment plane

direction of propagating

S
S1 A S2

For any function f(s), we have the Taylor expansion

2, As" d" f pracs : :
f(s,)= —_e &f(s) <«—— asymbolicnotation
(2) nzz(; n! ds" B (}51

In particular, if there is no explicit dependent of s in the function f(s),
namely f(s) = f(x(s),px(s)....), we have

ﬁ:_[H, fl=—:H:f, «<—— another symbolic notation

ds
Used Hamiltonian equation and the definition of the Poisson bracket.
Combining these symbolic notations, we have the exponential Lie operator

f(s,)=e """ (s),,
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Exponential Lie Operator
as a Transfer Map

element segment plane

direction of propagating

S AS S,
In the previous slide, we have shown that

f(s,)=e""" f(s),, -

If we apply this formula to a particular function: z=x, or p,, ory,or p,,
or § or ¢, and then we have

2(s,)=e"""z(s,).

Therefore, this exponential Lie operator is a transfer map. We have

d‘z,_w _ e—As:H:
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An Example of a Drift

Hamiltonian in the paraxial approximation is given by
Hp = 2(1+5)(|0X +Py).

It is easy to show that the exponential Lie operator indeed
generates the transfer map we have found by solving the
Hamiltonian equation. Namely, we have

X ze—As:HD:X‘_ — Xi +&AS,
1+0
px‘| = pXI

AsHD

Py =

CASH.- Py
=g oy =y 4+ N g
y y‘ yl 1+5 N

pyf py‘I = pyl
o, =e Mo =4,

AsHD

o As
/g — e—AS.HD.g — /g 2_ .
f [ i 2(1 5 ) (pXI pyl)

However, most time, it is easier to obtain the transfer map by solving
the Hamiltonian equation.
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Lie Operators and Map Concatenation

propagating

H; direction

Hz

|
|
S S
S1 A1 S2 Asz S3

just shown
It is obvious that J ‘

f(s+4s)=e " f(x,p,,..) = fe"*"x,e""p,,..) = f(x(s+ 4s),p (S + 4s),...)
L justshown

obviously true

The Lie operator acts only on the arguments of function . This precisely the
definition of the map concatenation we introduced early. So we have

—Asy:Hr q—As, H 5!
M s=dl o, ;=" e

The dot is removed because Lie operator automatically has the property.
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The Cambell-Baker-Hausdorf
(CBH) Theorem

To combine two exponential Lie operators, we have

1
‘A D :A+B+=[A,B]+..:
A ~:B:
e'eT =e ?
The bracket notes the Poisson bracket. This theorem can be shown easily

using the definition of the exponential Lie operator and the Jacob identity
for the Poisson brackets:

[A[B.C]] +[B,[CA]] +[C,[AB]] =0

In general, it should be considered as a part of perturbation theory. It is
good when A and B are small.

1)If [A,B]=0, then et = gh*® ( actually, this is an exact result)

This a necessary condition for the exponential Lie operator being a
transfer map of the element that can be described by a Hamiltonian.
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Similarity Transformation

A D A AARD.
e.A.e.B.e—.A. — e.e B:

Here is a proof. Set f=e-#'g, so we have
e f :e:A:Z%[B,[B,---[B, f1.11]
:Z%e:A:[B,[B,...[B, £1..1
_ z%[e:AZB,e:A:[B,---[B, f1..01
=Zﬁ[e:AzB,[e:A:B,...[e:A:B,e:A:f]---]]
=Zﬁ[e:AzB,[e:A:B,..-[e:A:B, g1l

B

=e g
We used e:A:[ fllfz] — [e:A: f11 e:A: fz] ( e:A:[X,pX] — [e:A:X, e:A: px] )
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Linear Similarity Transformation

A specially useful transformation is given by

d‘ze:B(z):dY-l _ e:B(c/'lz):.

Here, ¢/t is a symplectic linear map. As an example, let us to consider a

pair of identical thin lens sextupoles with integrated strength S,,separated
by -I transformation. For simplicity, we limit o the transverse dimensions.
The transfer map is given by

—'S—Z(xf—fxy”’): —'S—Z(xo’—fxy“’):

e ° (-Q)e ©
5205 B 5205 E Y
.6(x ) .6(x Fx7):

<«—— Similarity transformation
A YY) = o)

=(-2e ° e
< (CBH theorem

We obtain the well-known result by Karl Brown.
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Calculate Effective Hamiltonian

Considera set of multipoles separated by linear maps. We can represent
the nonlinear transfer map by

d{&,/e_:V/(Z)d{/,ze_:VZ(Z)"'din—/,ne_:vn(Z)dl n,n+/
. -V, (2): -V, (2): -1 -V, (2):
o d10,1e 1 dtl,Ze : d1 n—l,ndz n,n+1d1 n,n+1e di n,n+/
. -V, (2): -V, (2): V. (Mt 12):
_ dtO,le ' dil,ze i "'din—l,nd{n,nﬂe ™

1 1 | — similarity
— dl e_:v/ (d1§,n+12)1e—1V; (d1£,n+12): e_:vn (C/'lamlz): ’rr‘anSfor‘mGTion
0,n+1

— CBH theorem  Z 1S the coordinates at the end.

We can use the similarity transformation and CBH theorem to obtain an
effective Hamiltonian so that the transfer map consists of a linear map
followed by an exponential Lie operator for the nonlinearity. It is very
useful for understanding of the nonlinear effects and their compensation.
Clearly, it is an approximation to a real accelerator.
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Perturbation of Sextupoles

For a sextupole magnet, we have the potential

V() = 22 (€ =3y ).
So 6

_ S
VS(dzi,le) - EZ(Xi3 — 3Xi yi2 )’
with
Xi — \ IBx(Si ) (COSAl/ji,nHX _ Sin Al/”i,nJrl px)’
Yi =+ IBy(Si )(COsAg, ...y —SIiNAg, ., py)’

where x,p,.y p, are the normalized coordinates at n+1 position. The
effective Hamiltonian based on the CBH theorem is

n S’ 1, S'S!
Heff :ZFZ(Xis_3Xiyi2)_52?[(xi3_3Xiyi2),(xj3_3xjng)]
1=/ <]

The first term is the same as the first-order canonical perturbation
theory. Except the reference point is the end rather then the beginning.
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Effective Hamiltonian

The Poisson bracket can be evaluated, we have

n |

He = ZEZ(Xf -3%Y7)

=7

1 n i . .
o > §'s! M{Sln(A%,nﬂ ~AQ; 1) ByiBy XX iV

<]

+SINAY; 00 = AV 1) (BiX = By VD) (B iXi = By iYi) 1 7}

We see that two sextupoles generate octopole like terms.
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Second-Order Symplectic Integrators

Separate Hamiltonian into two exactly solvable parts:

H=H,+H,

L o )
Approximation with symplectic integrators: / propagator

n n _Hot z ‘Ho:

e~ HL _ He—:H:As ~ H[e 2 e—fH 1:Ase_TAS +O(?S)3]
exact kick error

1. The residual ferm can be easily see from the CBH theorem
2. It becomes the exact solutionat the limit of infinite number of segments
3. Preserves symplectic condition during the integration

2

L AsH,: oy - “LAsH,: “LAsH,: —As:(H 1 )+—AS
0" \—As:H 0 0 1 0

e e'e’ =e* e 2

~Asi(Hy+Hg)+0(As)?

[H,,Hy -+0(As)*:

=€
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Presentations for Magnetic Elements

Lie factors (/1’e:f3:e:f4: - engine in MARYLIE ( A. Dragt)
| « violates symplecticity when evaluates

Dragt-Finn

n - engine in TRANSPORT, MAD, COSY
Taylor map d{ (Z) (K. Brown and M. Berz), simple R-matrix

TPSA

[ - but high-order one violates

—MAS —MAS
Symplectic He 2 a7HiAsy 2
Integrator 1

- engine in TEAPOT, SAD, TRACY, LEGO,
PTC (E. Forest, R. Ruth, and K. Hirata)

- preserves symplecticity

- simple and based on several known solutions

- emphasis on numerical process
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Nonlinear Normal Form

1 1 1 | 1 1 1 |
-005 -004 003 002 001 0 0.01 0.02 0.03 0.04 0.05
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>

1 1 1 1 1 1 | 1 1
-002 -0015 -001  -0.005 0 0.005 0.01 0.015 0.02 0.025

Normalized coordinates

Transformation approximated by a 10t order Taylor map



Footprint in Tune Space
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Characteristics of Phase Space in
Electron Storage Rings

| / 4 W 0005 -
F 352 I * 0-
x o . o
Tt Zoomin _
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Stable region with largest
amplitudes



Resonance in Storage Rings

Y Aperture i it of ¢ at Injecti
X Aperture in unit of ¢_ at Injection o PETiure 1n uatt ol o, at fyection Gy
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X

Dynamic aperture in a two-dimensional fune scan for the baseline design
of PEP-X.

Where these resonances come from?
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PEP-X: ALLTME CELLS

Parameter Value

Energy, E [GeV)] 45

Horizontal emittance, €, [pm-rad] 94 6

Damping time, 1, [ms] 202

Tunes, v,, vy, Vs 89.66, 3957, 0003
Momentum compaction, o, 7.58x10-°
Bunch length, ¢, [mm] 3.00

Energy spread, c./E 3.6x10+4
Chromaticity, &, &, -14962, -64.12
Energy loss per turn Uy [MeV] 0.33

RF Voltage, Vg [MV] 1.16




Theoretical Minimum Cell (TME)

o [T] | ‘ | [Tl o
[T | MO 1]

v.6.
20. Unix version 8.51/15s . ; . : ; 24/08/09 17.33.1 0.10

18. B‘ D: - 0.09

B (m
D(m

16. - _0.08
N ; ' - 0.07
- 0.06
- 0.05
L 0.04
- 0.03
L 0.02
- 0.01
- 0.0

8.

s (m)

8¢ poc = 0.

When phase advance is 135° and 45° in x and y respectively, all
3rd order driving terms generated by the sextuples in 32 cells
are canceled out and the first-order chromatic beta beating
canceled as well.



PEP-X: ALLTME CELLS (135°/459)

One of the Earliest Designs

CELL
PEP-X, v.5, with

07/07/10 13.3623 (g

= 30. Linuxver§ion8.23/|0
= B- By D-
5 _ 0.07
25.
L 0.06
20.
. 0.05
15. ‘ ‘ ‘ | ‘ | ‘ | ‘ ‘ L 0.04
- i i
(SR L T IR |
1, | L 0.03
10. I
Hy“ M HU“ w. HH‘I‘I‘H ‘ | W HW | HII-W' |‘|I.-|||“|l‘| L 0.02
5. :
‘- | | “ - 0.01
0'0010 " 250. = 500. 756. " 1000. ~ 1250. ~ 15b0. ~ 1750. = 20D0.  2250. '(25)30(.)'0
O/ o = O. >

Table name = TWISS



Third-Order Achromat (Karl Brown)
(linear in sextupole strengths)

200

3v, (2477
v, [(29)%7] u
vx+2vy[(2Jx)1’2(2Jy)]

180

160 -

v, (241220

vx—2vy[(2Jx)1’2(2Jy)]

140 |-

’ |

120 |-

Driving Terms
Y
o] Q
@] @]
| |

®
o}
|

40 -

20

o]

a ]
o 500 1000 1500 2000 2500
s(m)

Nonlinear effects of sextupole magnets, calculated with LEGO. The results
show that eight 1350/450 cells make a "third-order” achromat.

Yunhai Cai, Nucl. Instr. And Meth. A 645 (2011) 168-174.



Fourth-Order Achromat?

(quadratic in sextupole strengths)

= 10%

Oriving Terms
N

1.5

1+

0.5

o

Interferences among sextupole magnets, calculated with LEGO. The
results show that eight 1359/450 cells nearly make a “fourth-order”
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achromat. These cancelations came as a great surprise.

Yunhai Cai, Nucl. Instr. And Meth. A 645 (2011) 168-174.



Fourth-Order Residual Terms
(quadratic in sextupole strengths)

x 10°

PO A ﬁ
@] = N (] 1N 6]

v +2y (2 )2

2v,+2v,

o] 500 1000 1500 2000 2500
s{m)

x 10°

y
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8
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0
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Interferences among sextupole magnets, calculated using LEGO. The
results show that eight 1359/450 cells generate a systematic
4t order resonance, namely 2v,+2y,=258.



Tune Scan of Dynamic Aperture
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Confirmation of the numerical analysis using the map.

9/29/2011 Yunhai Cai,



Dynamic Aperture of PEP-X

0.25 I I
— & — on—-momentum
— % — 1% momentum deviation
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7 1 \
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Dynamic aperture is much larger then the size of stored beam and is
enough also for an off-axis injection system and top-off operation.



Summary

+ Lie algebra is a powerful method for nonlinear
analysis. It is equivalent to the Hamiltonian
perturbation

Exponential Lie operator is a representation of the
transfer map

- Used to derive symplectic integrator
- Define transfer map of a beamline

» Similarity transformation and the CBH theorem are
two important tools in the Lie method. They can be
used to derive the effective Hamiltonian
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