

ILC Damping Ring Lattice Error Tolerances

J. Shanks and D. Rubin Cornell University
October 25, 2012

DTC04 Summary – KILC

Status

- All collider operating configurations can be accommodated (5Hz, 10Hz, electrons, positrons)
- Tunable
 - Range of phase trombone > 1 λ
 - Range of chicane ± 4mm
- Established BPM resolution and alignment tolerances required to achieve <2 pm-rad with emittance tuning
- Demonstrated existence of a particular deployment of corrector magnets sufficient to achieve < 2pm-rad
- Demonstrated adequate dynamic aperture with wiggler nonlinearities and magnet multipole errors (but not simultaneously)

Ongoing effort

- Explore range of tolerable multipole errors
- Identify the multipole responsible for reducing dynamic aperture
- Explore tune plane to identify operating point with more DA
- Compute DA with wiggler nonlinearities and multipole errors and misalignments simultaneously
- Investigate emittance tuning with fewer BPMs and/or fewer correctors
- Investigate alternate sextupole distributions for more DA
- Explore implications of reduced energy spread of injected bunch (0.75%)

DTC04 Summary – KILC

Status

- All collider operating configurations can be accommodated (5Hz, 10Hz, electrons, positrons)
- Tunable
 - Range of phase trombone > 1 λ
 - Range of chicane ± 4mm
- Established BPM resolution and alignment tolerances required to achieve <2 pm-rad with emittance tuning
- Demonstrated existence of a particular deployment of corrector magnets sufficient to achieve < 2pm-rad
- Demonstrated adequate dynamic aperture with wiggler nonlinearities and magnet multipole errors (but not simultaneously)

Ongoing effort

- Explore range of tolerable multipole errors
- Identify the multipole responsible for reducing dynamic aperture
- Explore tune plane to identify operating point with more DA
- Compute DA with wiggler nonlinearities and multipole errors and misalignments simultaneously
- Investigate emittance tuning with fewer BPMs and/or fewer correctors
- · Investigate alternate sextupole distributions for more DA
- Explore implications of reduced energy spread of injected bunch (0.75%)

Layout - Reminder


```
Circumference - 3238 m
5.6 \mum-rad < \gamma \epsilon_x < 6.4\mum-rad
54 Wigglers
        length 2.1 m
        B<sub>peak</sub> 2.2 T
        Poles 14
        Period 30cm
        24ms > \tau_x > 12ms
Phase trombone \rightarrow \pm 0.5 \lambda_{\beta}
Chicane → ± 3mm pathlength
Up to 12 - 650MHz RF cavities
        => \sigma_l = 6mm
```


Lattice – Arc Cell - Reminder

Each cell contains:

- 1 3m dipole, $\theta = \pi/75$
- 3 quadrupoles
- 4 sextupoles
- 3 corrector magnets
 - 1-horizontal steering =
 - 1-vertical steering
 - 1- skew quad
- 2 beam position monitors

75-cells/arc

Lattice – Optics Functions - Reminder

DTC04 straights are based on their counterparts in the 6.4km DCO4 lattice created by Andy Wolski and Maxim Krostelev

Parameter Table

Parameter	10 Hz(Low)	5 Hz (Low)	5 Hz (High)	10 Hz (electrons)
Circumference	3.238 km	3.238 km	3.238 km	3.238 km
RF frequency	650 MHz	650MHz	650 MHz	650 MHz
τ _x /τ _y [ms]	12.86	23.95	23.95	17.5
T _z [ms]	6.4	12.0	12.0	8.7
$\sigma_{\rm s}$ [mm]	6.02	6.02	6.02	6.01
σ_{δ}	0.137%	0.11%	0.11%	0.12%
α_{p}	3.3 X 10 ⁻⁴			
γε _x [μm]	6.4	5.7	5.7	5.6
RF [MV] Total/Per cav(12)	22.4/1.9	14.2 /1.2	14.2/1.2	17.9/1.5
RF – synchronous phase[deg]	21.9	18.5	18.5	20.3
ξ_x/ξ_y	-50.9/-44.1	-51.3/-43.3	-51.3/-43.3	-51.3/-43.3
Wigglers- N _{cells} @B[T]	27@2.16	27@1.51	27@1.51	27@1.81
Energy loss/turn [MeV]	8.4	4.5	4.5	6.19
sextupoles	3.34/-4.34	3.34/-4.23	3.34/-4.23	3.34/-4.23
Number of bunches	1312	1312	2450	1312
Particles/bunch [x 10 ¹⁰]	2	2	1.74	2
Power/RF coupler [kW]*	272 (389mA)	146 (389mA)	237 (632mA)	200 (389mA)

^{*}Power/coupler is computed as (Current) X (Energy loss/turn)/(Number of cavities)

Parameter Table

Parameter	10 Hz(Low)	5 Hz (Low)	5 Hz (High)	10 Hz (electrons)
Circumference	3.238 km	3.238 km	3.238 km	3.238 km
RF frequency	650 MHz	650MHz	650 MHz	650 MHz
τ _x /τ _y [ms]	12.86	23.95	23.95	17.5
T _z [ms]	6.4	12.0	12.0	8.7
$\sigma_{\rm s}$ [mm]	6.02	6.02	6.02	6.01
σ_{δ}	0.137%	0.11%	0.11%	0.12%
α_{p}	3.3 X 10 ⁻⁴			
γε _x [μm]	6.4	5.7	5.7	5.6
RF [MV] Total/Per cav(12)	22.4/1.9	14.2 /1.2	14.2/1.2	17.9/1.5
RF – synchronous phase[deg]	21.9	18.5	18.5	20.3
ξ_{x}/ξ_{y}	-50.9/-44.1	-51.3/-43.3	-51.3/-43.3	-51.3/-43.3
Wigglers- N _{cells} @B[T]	27@2.16	27@1.51	27@1.51	27@1.81
Energy loss/turn [MeV]	8.4	4.5	4.5	6.19
sextupoles	3.34/-4.34	3.34/-4.23	3.34/-4.23	3.34/-4.23
Number of bunches	1312	1312	2450	1312
Particles/bunch [x 10 ¹⁰]	2	2	1.74	2
Power/RF coupler [kW]*	272 (389mA)	146 (389mA)	237 (632mA)	200 (389mA)

^{*}Power/coupler is computed as (Current) X (Energy loss/turn)/(Number of cavities)

Characterization – Dynamic Aperture

- Focus on 5Hz low-power lattice
 - Previous studies have shown minimal difference for the 10Hz lattice
- 2-family sextupole distribution
 - Chromaticity ~ 1 (horizontal and vertical)
- Track for 1000 turns; if particle lost, record amplitude
- Overlay phase space amplitude of injected bunch:
 - $-A_x+A_v < 0.07 \text{ m-rad (normalized)}$

Guide field multipole errors

Dipole multipoles, r=3cm

	Systematic		Random	
Multipole	$a_n(\times 10^{-4})$	$b_n(\times 10^{-4})$	$a_n(\times 10^{-4})$	$b_n(\times 10^{-4})$
3	1.60	0.0	0.8	0.0
4	-0.16	0.0	0.08	0.0
5	0.76	0	0.38	0.0

Quadrupole multipoles, r=5cm

	Systematic		Random	
Multipole	$a_n(\times 10^{-4})$	$b_n(\times 10^{-4})$	$a_n(\times 10^{-4})$	$b_n(\times 10^{-4})$
3	-0.124	-0.115	0.761	0.725
4	0.023	0.141	1.32	1.27
5	-0.043	0.0062	0.15	0.162
6	3.40	-0.493	1.65	3.63
7	0.003	-0.0102	0.067	0.066
8	0.006	0.0038	0.089	0.066
9	0.006	-0.0028	0.046	0.049
10	-0.617	-0.577	2.46	2.33
11	-0.002	-0.0038	0.042	0.035
12	0.036	-0.0653	0.348	0.366
13	0.006	0.012	0.092	0.086
14	0.01	-0.0074	0.476	0.446

$$(B_y + iB_x) = B(r) \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{x}{r} + i\frac{y}{r}\right)^{n-1}$$

Sextupole multipoles, r=3.2cm

	$\operatorname{Systematic}$		Random	
Multipole	$a_n(\times 10^{-4})$	$b_n(\times 10^{-4})$	$a_n(\times 10^{-4})$	$b_n(\times 10^{-4})$
4	2	0	1	0
5	1	0	0.3	0
6	7	0	1	0
7	1	0	0.3	0
8	1	0	0.3	0
9	1	0	0.3	0
10	1	0	0.3	0
11	1	0	0.3	0
12	32	0	1	0
13	1	0	0.3	0
14	1	0	0.3	0

SPEAR3 and PEPII
Measured multipoles – Y. Cai

Use 2x these values in simulations

Ideal Lattice – Bend-Drift-Bend Wigglers

- Using MAD-style wiggler model
- DA improves slightly when including multipoles

Ideal Lattice - Wigglers with Taylor Map

 DA much reduced by including full wiggler map, but is still sufficient for ideal lattice

From this point on, only consider Taylor map wigglers for DA

Vertical amplitude [mm]¹⁷

Increased Multipoles

- Using Taylor map for wigglers
- Increase multipoles from Y. Cai's table until dynamic aperture is impaired
- For ideal lattice, ~10x multipoles (systematic + random) may be acceptable
 - However, tolerance must be a balance between multipoles, misalignments, and number of BPMs; can't just consider multipoles by themselves

Error Tolerance - ring_ma

- Built on Bmad library
- Capable of introducing errors to any parameter for any element described by Bmad
 - Examples: offset (x,y,z), roll, pitch, k1, k2, arbitrary multipoles, corrector calibrations, ...
- Thorough characterization of BPM errors
 - Offset with respect to nearest quad; BPM tilt; relative button-to-button gain error; shot-to-shot repeatability
 - All simulated measurements used for corrections have BPM errors
- Multi-stage corrections
 - Simulate new measurements after each level of correction

Example: Emittance Tuning at CESRTA

- Model emittance correction procedure at CESRTA
- Typical 95%CL correction levels:
 - $-\eta_{y} = 15$ mm
 - Cbar12 = 1x10⁻³
- Consistent with measurements
- Confidence in ring_ma for describing correction levels for coupling, dispersion

Misalignments and BPM Resolution

Parameter	RMS	Affected by multiplier?
BPM – Differential resolution	1 µm	No
BPM – Absolute resolution	50 μm	No
BPM – Tilt	5 mrad	No
BPM button – Gain variation	0.5%	No
Quads + Sexts - Offset (H+V)	25 μm	Yes
Quads – Tilt	50 µrad	Yes
Dipole – Roll	50 µrad	Yes
Wiggler - Offset (V only)	100 µm	Yes
Wiggler - Roll	100 µrad	Yes
Multipoles (sys+rand)	2x PEP-II tables	Yes (random only)

Nominal misalignments and BPM tolerances for ring_ma studies

Emittance Tuning Procedure

- 1) Measure and correct orbit using all steerings
- Measure betatron phase advance and coupling (by resonant excitation)
 - Correct using quadrupoles and skew quadrupoles
- 3) Measure orbit, coupling, and vertical dispersion
 - Simultaneously correct with vertical steerings and skew quadrupoles

DTC04 – Error Tolerance

- Misaligned as per misalignment table
- Optics correction assuming BPM accuracy as tabulated and
 - 1 skew quad in each arc cell
 - 2 skew quads in each dispersion suppressor line
 - 1 H and V steering in each arc cell
 - 1 H&V steering adjacent to each quad in straights
 - BPM at every quadrupole

Vertical emittance, dispersion and coupling (actual, not observed) after emittance tuning for 95%CL of 100 seeds

	1x Errors		2x Errors	
Parameter	No Multipoles	Systematic+Random Multipoles	No Multipoles	Systematic+Random Multipoles
ϵ_{y}	0.20 pm	0.20 pm	0.33 pm	0.41 pm
η_{y}	0.54 mm	0.53 pm	0.98 mm	1.07 mm
C ₁₂	3.86x10 ⁻⁴	3.83x10 ⁻⁴	7.76x10 ⁻⁴	8.71x10 ⁻⁴

Error Tolerance – MAD Wigglers

- Multipoles do not have a significant effect on optics correction
 - Will have a bigger effect on dynamic aperture, after misalignments and corrections
- Optics corrections are more or less unaffected by wiggler model
 - Opt to use MAD-type wigglers to increase simulation throughput

ilc

Error Tolerance - Taylor Map Wigglers

Reduced Number of BPMs

Reduce the total number of BPMs in the arcs by 50% (from 2/cell to 1/cell)

Error Tolerance – Reduce BPMs in Arcs

- With reduced number of BPMs in arcs, still achieve emittance target
- Significant cost savings (511 BPMs → 361 BPMs = 30% reduction in BPMs)

50% Arc BPMs, 100% Straight BPMs

Increase to 5x Multipoles

Misalignment and BPM Resolution Tolerance

Updated to reflect maximum tolerance for ϵ_{y} < 2pm-rad and sufficient dynamic aperture

Parameter	RMS
# of BPMs	361 (50% in arcs, 100% in straights)
BPM – Differential resolution	1 µm
BPM – Absolute resolution	50 μm
BPM – Tilt	5 mrad
BPM button – Gain variation	0.5%
Quads + Sexts - Offset (H+V)	50 μm
Quads – Tilt	100 µrad
Dipole – Roll	100 µrad
Wiggler – Offset (V only)	200 μm
Wiggler - Roll	200 μrad
Multipoles	2x PEP-II (systematic) 4x PEP-II (random)

DTC04 Summary

Status

- Updated constraints on magnet multipole and misalignment tolerances, consistent with ε_y = 2pm-rad and DA > 0.07m-rad:
 - Systematic multipoles: 2x PEP-II multipoles
 - Random multipoles: 4x PEP-II multipoles
 - Misalignments and BPM errors as per previous slide
- Reduced BPM count by 30% (511 \rightarrow 361)
 - 50% BPMs in arcs; maintain all BPMs in straights
- Sufficient dynamic aperture confirmed with reduced BPM count, full wiggler map, misalignments and corrections, and multipoles

Ongoing effort

- Investigate increasing misalignment tolerances beyond 2x nominal values
 - Include dipole strength, quad k1, sextupole k2 errors
- Emittance tuning with fewer correctors; reduced number of BPMs in straights
- Explore tune plane for better dynamic aperture
- Alternate sextupole distributions for more DA

Backup Slides

Damping Wigglers

Wiggler straight

- 2 wigglers/cell
- 30 cells
- 2.1 m wiggler
- 1.5T< B_{peak} < 2.2T
- 54 @ 2.16T => $T_x = 13$ ms (10Hz)
- 54 @ 1.51T => τ_x = 25ms (5Hz)
- 3 empty cells will accommodate
 6 additional wigglers if required
- H&V dipole corrector and BPM adjacent to each quad

RF straight

RF

- 2 cavities/cell
- 22.4 MV => 6mm bunch length @ τ_x =13ms
 - => for 12 cavities
 - 1.9MV/cavity
 - 272kW/coupler

Lattice can accommodate 16 cavities if required

Cavities offset so that

waveguides of upper and lower orings are interleaved

Circumference chicane

Chicane

- $-\Delta C = \pm 4mm$
- $-\Delta\epsilon_{y} < 3\%$
- H&V corrector and BPM adjacent to each quadrupole 35

Frequency maps

- With and without multipoles
 - (static + random) vs. no multipoles
 - Scan amplitudes (0:30mm)x(0:20mm)
 - Track 2048 turns; FFT first and last 1024 turns
 - Plot:
 - ΔQ vs. (x,y)
 - ΔQ vs. (Qx, Qy) [tunes from first 1024 turns]
- Maps for a single seed (with misalignments and corrections) per scenario

DTC04-5Hz Frequency maps

- No Multipoles
- Random misalignments
- Corrections

- Static + Random Multipoles
- Random misalignments
- Corrections

DTC04-10Hz Frequency maps

- No Multipoles
- Random misalignments
- Corrections

- Static + Random Multipoles
- Random misalignments
- Corrections

DTC04-5Hz Frequency Maps

 ΔQ vs. (Q_x, Q_y)

- No Multipoles
- Random misalignments
- Corrections

- Static + Random Multipoles
- Random misalignments
- Corrections

