

Reaching ultra-low emittance at SLS through (systematic and) random optimization

LCWS 2012
Joint CLIC/ILC Working Group – Damping Rings session 25.10.2012
M. Aiba, M. Böge, N. Milas, A. Streun, PSI

Introduction

- Vertical emittance minimization is motivated by:
 - increase of brightness and transverse coherence
 - operational margin for small gap insertion device (possibly even smaller undulator gap)
 - TIARA* WP6 SVET (SLS Vertical Emittance Tuning)
 - Collaboration: CERN / INFN / PSI+Maxlab
 - Establish VET means at SLS, for CLIC DR and SuperB
 - Fine corrections of betatron coupling and $\eta_{_{Y}}$
 - Maintaining small emittance during operation
 - Beam size monitor R&D → Natalia Millas' talk
 - Intra Bunch Scattering studies → Fanouria Antoniou's talk

* http://www.eu-tiara.eu/

Swiss Light Source

SLS vertical emittance

What was expected and what is achieved

Emittance ratio $\equiv \varepsilon_{\text{v}}/\varepsilon_{h}$ $\varepsilon_{h} \sim 5 \text{ nm}$ (Insertion devices off)

1.8 pm in March 2011

- Better emittance ratio than expected, thanks to
 - 30 more skew quads installed (6 skew quads initially)
 - · Better alignment on girder than expected

Girder realignment in 2011

- Elaborated model based corrections
- Random optimization

Application of these methods achieved 0.9 pm!

Key component 1

levelling system

horizontal positioning system

Magnet girder

Key component 2

Versatile Sextupoles

all 120 sextupoles were delivered with H&V corrector coils

⇒ make skew quadrupoles and auxiliary sextupoles

120 sextupoles in 9 families:

SF(24), SD(24), SE(24) \rightarrow chromaticities

SSA(12), SSB(12), SMA(6), SMB(6), SLA(6), SLB(6) \rightarrow D.A.

SD, SE, S*B: **72** H&V correctors \rightarrow **orbit correction**

S*A: 24 skew quads $(\eta=0)$ \rightarrow betatron coupling

SF: $(12 \text{ skew quads } (\eta > 0)) \rightarrow \text{vertical dispersion})$

Girder realignment Motivation and approach

Girder discontinuity estimation from → "corrector pattern"

Survey data from 2010 and analysis

"well, for starters, I Think it's about time for an alignment job."

- BAGA (Beam Assisted Girder Alignment)
 - Remotely align girders based on survey data
 - Confirm the result online with beam and fast orbit feedback running

Girder realignment result

BAGA resulted in:

- -Gaussian like corrector kick distribution
- -About half corrector kick
- -About half dispersive skew correction
- -Similar non-dispersive skew correction

Model based correction 1

Dispersion Correction

Vertical Dispersion @ BPMs

Skew Quad – Dispersion Response Matrix SLS: 12 x 73 coefficients

- measure difference orbits for various dp/p
- determine vertical dispersion knowing dp/p
- invert Skew Quad Dispersion Response Matrix
- feed measured dispersion into it to determine
 Dispersive Skew Quads values for correction
- Get a Model Prediction
- Apply correction and remeasure

Model based correction 2

Betatron Coupling Correction

^{*} Contribution of BPM tilts subtracted

Random optimization*

- Limitations in model based corrections...
 - Beam measurement errors
 - Model deficiencies
- Multi-variable optimization
 - Random optimization would be the best algorithm
 - Model independent correction
 - The curse of dimensionality is avoided (#Knobs=12/24/36)
 - The optimum solution is within "walking-distance" after systematic correction
 - Minimal effort to implement
 - Potential of online optimization, i.e. keeping small emittance during the operation
 - NB: the optimization needs a target function, which is the measured vertical beam size in our case

^{*} J. Matyas, "Random Optimization", Automation and Remote Control 26 (2) (1965) 246.

Note: "Random optimization" seems more accepted word than "Random walk optimization"

How it works

Flowchart

Typical successful step (Figure from first test)

MD on 6th Dec. 2011*

Beam size measurement during MD

First dedicated MD after BAGA

- η_{v} ~1.3 mm rms with model based correction!
- ϵ_{v} ~1.2 pm at the end of model based correction
- ε_ν~0.9±0.4 pm with RO in addition! (Only ND skew quads were optimized)
- Better coupling correction with RO was confirmed with ORM before and after

ND skew Q currents during RO (plotted 4 out of 24)

Demonstrations

Automated ROs

Beam size control with RO

Vertical beam size:

Measured and Requested

Lifetime optimization

Lifetime and Injection rate

Vertical beam size is detuned for demonstration purpose to create a room of lifetime improvement

Summary and outlook

- Ultra low vertical emittance of 0.9 pm is achieved at the SLS!
 - BAGA + Model based corrections + RO
- RO
 - Successfully demonstrated, a good performance booster
 - Potential for online optimization (like feedback)
- Even smaller vertical emittance is expected
 - Iteration/elaboration of BAGA
 - New monitor with better resolution
 - More knobs: Dispersive skews
 Orbit manipulation →Simone Liuzzo's talk