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Introduction to IBS

Introduction to CesrTA IBS Program
Briefly discuss modeling

Show data and modeling results
Program directions
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* In context of e*/e” storage rings: A single-bunch, collective
effect that limits the density of particle beams.

— Interpret as either a per-bunch current limit or a lower bound on
emittance.

— Constrains damping ring parameters in future colliders.

« Mechanism:

— In a storage ring, the average momentum of the 3 bunch dimensions are
unequal. i.e. the temperatures are not in equilibrium.

— Scattering transfers momentum from the “hotter” dimensions to the
“cooler” dimensions.

— Additionally, scattering that occurs in a dispersive region increases the
total momentum of the 3 dimensions.
« IBS has been observed to have a significant impact on hadron
machines such as RHIC, Tevatron, LHC, and has been
observed at electron machines such as ATF and CesrTA.
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« CesITA is a low-emittance wiggler-dominated e+/e-
machine capable of high single-bunch currents.

— Small beam sizes: (o) ~ 240 pm , (o,) ~ 12 um
— Single Bunch Current:

— Variable Beam Energy 10° to 1011 part/bunch
— e and e*

— Versatile Optics (knobs for emittance, dispersion in wigglers and
Instrumentation source points)

— Variable RF Voltage

 |nstrumented for simultaneous measurement of
projected beam sizes in all 3 dimensions

— Bunch-by-bunch, turn-by-turn beam diagnostics

e Because we need to

— The next generation of colliders (and light source) will be
low-emittance lepton machines whose design will be
Impacted by IBS predictions.
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* A conseguence of CesrTA’s versatility is that the
machine requires specific setup and tuning prior to
each experiment

 VBSM, xBSM, and Streak Camera are multi-purpose
devices and require configuration and monitoring

* 5 or 6+ people on shift

« Conditions are set:
— Beam energy (1.8, 2.1, 2.3 GeV)
— Operating Point (Tunes) Set
— Set RF Voltage (range is >6.3 MV to <3.0 MV)
— LET Corrections and Optics Choice

— Closed orbit & dispersion bump knob for vertical emittance
adjustment
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1. Configure machine as just mentioned
2. Charge single bunch to 10+ mA

3. Cut injection and take data as beam decays
— Decay due to Touschek scattering

— Each run lasts about 30 minutes
« Decay to 4 mA in about 3.5 minutes.
* Decay from 4 mA to 1 mA in about 21 minutes.

« Below 1 mA, decay is very slow. Scraping is used to
speed things up.
— Gaps in upcoming Beam Size vs. Current plots are due to
scraping
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* Model results will be shown along with data

1. Twiss based: Piwinski, Bjorken-Mtingwa, and descendants.
. Commonly used

2. Sigma-matrix based: Kubo and Oide!. Uses

Eigendecomposition of the sigma matrix, rather than Twiss
parameters. Normal modes.

. Natural handling of coupling between the three dimensions?

3. Monte-Carlo: Tracking code with SR. Application of Takizuka

and Abe’s plasma collision algorithm in the rest frame of the
bunch.

. Robust, but CPU-intensive
*  Options for OpenMP and OpenMPI parallelization

 Implemented in BMAD simulation suite

—  Symplectic tracking, field maps for wigglers, normal mode

computations, sextupoles, multipoles, synchrotron radiation, hooks to
Etienne’'s PTC

— Misalignment & correction scheme

— 1 Code is templated on SAD and formalism discussed in SAD Manual. = 2Not yet validated by experiment
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« Additional current-dependent effects observed
In the CesITA IBS Experiments

— Potential Well Distortion
« Causes bunch lengthening

« Does not impact energy spread
— Energy spread has been measured to be constant

« Strength of effect depends on bunch length, but not
transverse dimensions
— Current-Dependent Tune Shift
« Tunes of machine change with current
* ~0.5 kHz/mA

 Brings operating point towards or away from resonance
lines
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1. Positrons in LET conditions

1. Bare data
2. Method Comparison
3. With just sigma-matrix model

2. Positrons with vertical beam size increased
3. Electrons in LET conditions
4. Electrons with vertical beam size increased
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Data from April 2012 CesrTA Run
Positrons with small vertical beamsize
2.1 GeV
Fractional tunes:

« Qx=0.624

« Qy=0.590
Large horizontal blow up due to large
horizontal dispersion
Small vertical blow up due to small
vertical dispersion
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MPXX: Modified Piwinski with Tail Cut

Assumes this

. Fitted g, = 6.85 m >
- Fitted g, =17.0 pm

* Includes PWD model

2
Oz,y = \/ew,yﬁw,y + (0pTa,y)

Kubo: Sigma-matrix. Based on SAD
+ Beamsize calculated from normal mode projection

* Natural g, = 3.34 nm
* Natural g, = 14.9 nm

* Does not yet include PWD model

Monte Carlo: Takizuka & Abe . Length FWHM “‘;}3 e

» Emittance is a result of trackin MPXX ——

+ Does not yet include PWD model 7 . . . . . . Kubo ——
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« Zero current emittances obtained from
Etienne Forest’'s PTC
* £,=3.34nm
* §,=14.9 nm
*Observed discrepancies with model:
*Vertical blow-up above 6 mA.
*Vertical scatter at low current.
*1 mm systematic in bunch length
*Energy spread measured, found to be
constant
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Positrons, Coupling Knob o
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Closed coupling & dispersion bump

(through wigglers) used to generate

vertical emittance

Natural €, = 3.34 nm

Vertical Emittance (fitted): €, = 43.2 pm
* 4 times larger than LET

Longitudinal behavior does not change
significantly with reduced particle density.
*Supports PWD hypothesis
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Current and Future Efforts
o Understand scatter at low current

— Recent developments point to noise

« Understand blow up at high current

— Combination of effects
« Species dependent tune shift
* Tune plane
* Noise
« Other physics (space charge, ions, ?7?)

 IBS at 1.8 GeV and 2.3 GeV

+ Use lattices that manage V,: and other coupling
terms

* Manipulate coupling terms to thoroughly
validate 2-matrix based IBS formalisms
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* |IBS is an important effect for the next generation of colliders (and
light sources)

« |IBS theory gives good agreement with proton! and ion machines?

« CesrTA is good laboratory for studying IBS in lepton machines
— Versatile optics and instrumentation
— Different energies and species
— Damping wigglers
* We also encounter the other current-dependent effects that show up
In small, intense beams
« Goals:

1. Generate beams where IBS effects are dominant and can be
separated from other effects

2. Thorough investigation of the available IBS modeling formalisms
1. Twiss-based

2. > -matrix based
3. Monte Carlo

3. Gain experience and understanding of the other single-bunch, current-
dependent effects that may be encountered in collider damping rings

V. Lebedey, AIP Conf. Proc. 773(1), 440 (2005) 2A. Fedotov et al, HB2006, p. 259



