The ILD DBD

Frank Simon

MPI for Physics & Excellence Cluster 'Universe'

Munich, Germany

LCWS 2012, Arlington, TX, USA, October 2012

Outline

- The ILD Concept
 - Overview
 - Subsystems
- The ILD Detector System
- Software & Performance
- Summary

From the LOI to the DBD

- LOI published early 2009
 - ILD evolved out of two similar detector concepts: GLD and LDC
- Since 2009: Progress in all areas
 - Updated detector design, including realistic engineering
 - Substantial progress in demonstration of technologies with prototypes and test beams
 - Improved and partially redeveloped reconstruction software and simulation model
- Overall: Substantial steps forward in all aspects of ILD

ILD - Overall Design

Large detector optimized for best resolution, providing flexibility for higher energies up into the TeV range

ECAL

forward calorimeters
LumiCAL
BeamCAL, LHCAL

Silicon tracking
Silicon External Tracker
Endplate Tracking Detector
Forward Tracking Disks
Silicon Inner Tracker

VerTeX Detector

ILD Design - General Considerations & Challenges

- Performance goals set by physics
 - Jet energy resolution < 3% 4% over full relevant energy range
 - Track momentum resolution $\delta(1/p_T) \simeq 2 \times 10^{-5}/{\rm GeV}/c$
 - Excellent vertexing for b & c identification
- Resulting main requirements and challenges
 - Highly granular PFA calorimeters
 - Low material budget in front of calorimeter
 - Power-pulsing, low power consumption
 - Triggerless readout
 - Highly integrated electronics

The Vertex Detector

- VTX design:
 - 3 (almost) cylindrical layers pairs from 16 mm
 to 60 mm
 - Alternative: 5 single layers, from 15 mm to 60 mm
 - Several technologies under study: CMOS Pixel Sensors, Fine Pixel CCDs, DEPFET, use of multiple technologies an option
 - Time stamping depends on technology

$$\sigma_b < 5 \oplus 10/p\beta \sin^{3/2}\theta \ \mu \text{m}$$

- Requirements:
 - Spatial resolution < 3 μm
 close to IP
 - Material budget < 0.15% X₀
 per layer
 - low power consumption!
 - Pixel occupancy not exceeding a few %

Vertex Detector Technologies

- Active development of several technologies, synergies with LHC & others
 - All provide low material budget by thin sensitive layers
 - Trade-off between readout speed and pixel size (no time stamping)
- CMOS pixel sensors
 - ~ 17 μ m pixel precision layers, 17 x 85 μ m² pixel fast layers to reduce effective occupancy

- Low material double layer "PLUME" demonstrated
- FinePitch CCDs
 - \sim 5 µm pixels in inner layers, \sim 10 µm pixels further out
 - Small prototype successfully tested, (almost) full size prototype availabe

- DEPFETs
 - ~ 20 μm pixels, all-silicon modules with integrated support structure

The Main Tracker: TPC

- Main tracker philosophy:
 Continuous tracking for excellent pattern recognition and dE/dx capability instead of best possible single point resolution
- The ILD TPC
 - Up to 224 space-points per track
 - Single point resolution < 100 μm in rφ
 - Two-hit separation ~ 2 mm in rφ
 - Low material budget: $5\% X_0$ in barrel region, $<\sim 25\% X_0$ in the endcaps
 - Standalone momentum resolution $\delta(1/p_T) \simeq 10^{-4}/{\rm GeV}/c$

Two main readout options:

GEMs, Micromegas

Alternative: pixel detectors

TPC Development

- Large prototype with "space frame" endplate
- Test in magnetic field up to 4 T
- Two readout technologies already tested:
 Triple-GEM, Micromegas

extrapolated resolution < 100 μm also beyond 2000 mm!

The Silicon Trackers

- Silicon tracking to complement the TPC main tracker:
 - Improved resolution
 - Time-stamping
 - Calibration of distortions & alignment
 - Extended coverage in the forward region
- Combined tracker resolution:

$$\delta(1/p_T) \simeq 2 \times 10^{-5}/\text{GeV}/c$$

- Inner tracking barrel SIT 2 fake double-sided strip layers, 2 space points
- Outer tracking barrel SET 1 fake double sided strip layer, 1 space point
- Outer forward tracking layer ETD 1 fake double sided strip layer, 1 space point
- Inner forward tracker FTD 7 disks (2 pixel, 5 strip)
- ▶ Common technology & design for all strip sensors in the silicon trackers

Silicon Tracker Technology

Philosophy: Compact, simple and cost-effective modules

▶ Edgeless sensors and integrated pitch adapters developed in synergy with

LHC upgrades

Only 50µm from end of strip to end of sensor!!!

integrated pitch adapter in a second metal layer

Interferometric monitoring of FTD with fiber-optic sensors: Monitor changes of environmental parameters, vibrations, ...

The Main Calorimeters

- Main calorimeters optimized for particle flow:
 - High granularity

- Small Molière radius in ECAL for good particle separation & photon identification
- Sufficient depth of the HCAL to limit leakage also at 1 TeV
- Compact design to fit inside magnet
- ECAL with tungsten absorbers and silicon and/or scintillator readout
- HCAL with steel absorbers
 - Analog Scintillator tiles with SiPMs
 - Semi-digital Glass RPCs with 2 bit readout, Micromegas as alternative

Calorimeter R&D

Calorimeter technology for ECAL & HCAL developed by CALICE:

Combined test-beam experiments to demonstrate PFA calorimetry

One highlight:

Shower separation with PandoraPFA in the SiW-ECAL and AHCAL physics prototypes

 Good agreement with simulations demonstrates realism of our full detector simulations & physics studies

- Readout ASICS for all calorimeter types with a common basis
- Common DAQ system, data format:

The SiW ECAL

• PIN silicon pad readout with 5.5 x 5.5 mm² pads

6.8 mm per double layer

Complete tungsten structure for technological prototype exists

Well-established technology: physics prototype in various beam times since 2006

Silicon sensors

The Scintillator ECAL

- Scintillator strips (5 x 45 x 1 mm³) read out with SiPMs
 - 6.9 mm per double layer, 0.1 mm more than SiW ECAL
 - Electronics based on AHCAL design synergies!

Extensive tests with a physics prototype, first module of technological demonstrator now in test beam at DESY

- Recover 5 x 5 mm² granularity with stripsplitting algorithm
- SiPMs / MPPC with higher smaller pixels under study to increase dynamic range
- Hybrid solutions together with Si layers (interleaved or as two sections) possible

The Analog HCAL

• Based on 3 x 3 x 0.3 cm³ scintillator tiles with embedded SiPM

Well-established technology: Extensive tests in beam with a 8 000 channel system since 2006

Compact design: < 6 mm non-absorber material per layer

Hadronic energy resolution of physics prototype with software compensation: $45\%/\sqrt{E} \oplus 1.8\%$

The Analog HCAL

First units (144 channels) of technological demonstrator currently in test beam: - embedded electronics, power pulsing, online zero suppression channel-by-channel auto-trigger, time stamping

mbedded SiPM

technology: Extensive tests in beam nnel system since 2006

The Semi-Digital HCAL

- Glass RPCs with 1 cm² pads
 - 3 thresholds per channel: allows to keep linearity to higher energies, improved resolution at high energies compared to purely digital mode

ASIC (HARDROC)
PCB
Pads (copper, 1 cm2)
Insulation (Mylar)
Anode resistive coating
Glass plate (0.7 mm)
Gas mixture
Chamber wall (1.2 mm)
Glass plate (1.1 mm)
Cathode resistive coating
Spacer (1.2 mm)

Full 1 m³ technological prototype with 48 layers, 430k channels & power-pulsing successfully tested in beam

The Semi-Digital HCAL

- Glass RPCs with 1 cm² pads
 - 3 thresholds per channel: allows to keep linearity to higher energies, improved resolution at high energies compared to purely digital mode

ASIC (HARDROC)
PCB
Pads (copper, 1 cm2)
Insulation (Mylar)
Anode resistive coating
Glass plate (0.7 mm)
Gas mixture
Chamber wall (1.2 mm)
Glass plate (1.1 mm)
Cathode resistive coating
Spacer (1.2 mm)

Full 1 m³ technological prototype with 48 layers, 430k channels & power-pulsing successfully tested in beam

Forward Calorimeters

- Luminosity measurement at the 10⁻³ level with LumiCal
- Bunch-by-bunch luminosity monitoring and fast feedback for beam steering with BeamCal
- Extended coverage to low polar angles
- ▶ The only subsystems with substantial radiation hardness requirements!

Silicon sensors for LumiCal - tested in beam

GaAs sensors and CVD Diamond for BeamCal

excellent radiation
hardness
GaAs shows a reduction of
the charge collection
efficiency to 20% after 7
MGy, still sufficient for MIP
detection

Muon System, Yoke and Coil

ILD Mechanical Design

- 5 Yoke rings
 - Mounted on air cushions for easy moving during assembly / dis-assembly / maintenance
- Central ring carries cryostat and solenoid:
 - Supports calorimeters, TPC and outer Si trackers
 - Inner detector & beam pipe supported from TPC

ILD Integration

 Service paths inside of the detector for power, data, cooling Assembly strategy with dedicated installation fixtures

The Experimental Hall

- Size of cryostat defines minimum diameter of access tunnel required for installation
 - For vertical access: Assembly of yoke rings and central detector system within cryostat on surface: 18 m diameter required
 - For horizontal access: Assembly of yoke rings and other large components in detector hall: > 8.7 m diameter required

ILD Simulation & Reconstruction

- Significant enhancements compared to the LOI
 - Increased realism in the detector description
 - Realistic geometry of most subsystems: Individual modules in trackers,
 engineering details (mechanical supports, electronics, cooling, cabling, ...)
 - Inclusion of dead material, cracks, ...
 - ▶ Material budget estimates based on R&D activities
 - Improved reconstruction software
 - New generation of PandoraPFA
 - Proper treatment of silicon strips
 - Completely new Kalman-Filter-based tracking
 - New flavor tagging based on boosted decision trees trained with fully simulated events

The ILD DBD

LCWS 2012

ILD Material & Performance

- WB 2.5 100 200 300 400 500 2 x E_J [GeV]
- PandoraPFA
 performance
 exceeding
 requirements over
 wide energy range
 (Goal: 3% 4%)
- Performance of new tracking for single muons

 resolution reaches
 asymptotic value
 of 2 x 10⁻⁵/GeV, defined
 as resolution goal of tracker

The ILD DBD

LCWS 2012

ILD Physics Performance

- Intense analysis efforts towards the DBD, presentations in various sessions here in Arlington
 - Benchmark processes at 1 TeV
 - $e^+e^- \rightarrow Hvv$
 - \bullet e⁺e⁻ \rightarrow W⁺W⁻
 - e⁺e⁻ → ttH
 - Benchmark process at 500 GeV
 - $e^+e^- \rightarrow tt$
 - Additional studies, such as Higgs self-coupling, top asymmetries, ...

- New compared to LOI: Inclusion of $\gamma\gamma \rightarrow$ hadrons background
- ▶ LHC inspired jet finding, successfully used at CLIC, to mitigate influence of background: k_t jet finder instead of Durham

ILD Physics Performance

- Intense analysis efforts towards the DBD, presentations in various sessions
 here in Arlington
 - Benchmark processes at 1 TeV
 - $e^+e^- \rightarrow Hvv$
 - \bullet e⁺e⁻ \rightarrow W⁺W⁻
 - e⁺e⁻ → ttH
 - Benchmark process at 500 GeV
 - $e^+e^- \rightarrow tt$
 - Additional studies, such as Higgs self-coupling, top asymmetries, ...

▶ LHC - inspired jet finding, successfully used at CLIC, to mitigate influence of background: k_t jet finder instead of Durham parameters optimized for different energies

Summary

- ILD is a PFA-based large detector concept optimized for best resolution and flexibility for energies up into the TeV region
 - Low-mass high-resolution vertex detector
 - Main tracker built around a large TPC providing excellent pattern recognition and silicon envelope trackers delivering momentum resolution and forward coverage
 - Highly granular calorimeters (em and hadronic), total thickness of $\sim 7 \lambda$
 - Moderate solenoidal field: 3.5 T (can be operated up to 4 T)
- Technology of many key components has been demonstrated
 - Low-mass silicon detectors, highly granular calorimeters with various technologies, power pulsing, ...

- Significant progress on realistic engineering support, services, ...
- Realistic simulation model: Dead material, cracks, realistic geometries
- Improved reconstruction code: Tracking, PFA, Vertexing
- Physics studies well on the way

Summary

- ILD is a PFA-based large detector concept optimized for best resolution and flexibility for energies up into the TeV region
 - Low-mass high-resolution vertex detector

- H All of this (and more) is being summarized in the DBD:
- Document well on the way
- Teck
 And a large number of presentations on various topics this week

• Lo And a large number of presentations on various topics this week

- Significant progress on realistic engineering support, services, ...
- Realistic simulation model: Dead material, cracks, realistic geometries
- Improved reconstruction code: Tracking, PFA, Vertexing
- Physics studies well on the way

ies,