Polarized cathode developments and future plans

A. Brachmann, T. Maruyama, J. C. Sheppard, and <u>F. Zhou</u>

SLAC

Thank J. Clendenin and other colleagues for their contributions

ILC08 Workshop, Nov. 16-20, 2008

Outline

- Major cathode R&D goals for future LCs:
 - To demonstrate full charge productions (highly polarized) for linear colliders, and
 - To develop high performance cathodes.
- Recent measurements on InAlGaAs/AlGaAs:
 - Measurements at SLAC's Cathode Test System (CTS)
 - Measurements at SLAC's Gun Test Lab (GTL)
- Summary for the measurements and future plans

Major parameters of ILC and CLIC e-sources

Parameters	ILC	CLIC
Electrons/microbunch	~3E10	6E9
Number of microbunches	2625	312
Width of Microbunch	1 ns	~100 ps
Time between microbunches	~360 ns	500.2 ps
Width of Macropulse	1 ms	156 ns
Macropulse repetition rate	5 Hz	50 Hz
Charge per macropulse	~12600 nC	300 nC
Average current from gun	63 μΑ	15 μΑ
Peak current of microbunch	4.8 A	9.6 A
Current density (1 cm radius)	1.5 A/cm ²	3.0 A/cm ²
Polarization	>80%	>80%

Challenges

- Full charge production limited by space charge and surface charge:
 - Lasers to demonstrate production of polarized electron beam with ILC and CLIC time structures
 - Good polarized cathodes to overcome surface charges with high QE and polarization
 - H.V. gun to overcome space charge, and ultra high vacuum to overcome contamination.
- Cathode candidates for linear colliders:
 - Less charge limit (surface charge and space charge)
 - High polarization (>85%)
 - High QE and QE lifetime

InAlGaAs/AlGaAs

- Strained-well InAlGaAs/AlGaAs structures designed and grown by St. Petersburg in Russia:
 - Large valence band splitting (~60 meV) due to combination of deformation and quantum confinement effects in quantum well.
 - Good BBR engineering
 - Thick working layer without strain relaxation
 - ~1% QE and 88%-93% polarization (Russia)

Capabilities at SLAC's Cathode Test System (CTS)

- Cathode preparation and cleaning processes
- QE and polarization measured at 20 KV
- QE and polarization of Cathode can be quickly characterized in few days.
- Drawback: unable to characterize surface charge⁸⁻²⁻²⁰⁰² limit (time evolution of bunch).

InAlGaAs/AlGaAs @ CTS

- Polarized cathode measurements:
 - Cathode preparation
 - Chemical cleaning
 - Load lock system to change cathode in UHVE Heat cleaning Load lock system to
 - Heat cleaning
 - Atomic hydrogen cleaning
- Sample 7-632: ~0.3% QE and 82% polarization.
- Sample 7-635: ~0.2% QE^E and 87% polarization.

Sample 7-632 Russian data: 0.8% QE and 88% Polarization

Sample 7-632 CTS/SLAC data: 0.3% QE and 82% Polarization

1% of QE recovered by AHC

- Probably due to insufficient As-passivation of surface; possible reason: oxide transfer As→Ga after some time storage.
- Oxides were not removed by conventional heating. But atomic hydrogen cleaning can significantly improve QE for same kind of Russian cathode in Germany.

V. Tioukine, MAMI (PESP2008)

SBIR graded Al_xGa_(1-x)As/GaAs (Grown by SVT)

- The graded bandgap active region provides an internal accelerating field for the photo-generated electrons in the conduction band. QE is increased by the field.
- But, the polarization is decreased; need to tune the structure parameters in SBIR phase II.

SVT: #5856 (constant grading)

Capabilities at SLAC's Gun Test Lab

- Re-established all measurements at GTL after three-year down time:
 - Surface charge limit (time evolution of bunch)
 - QE and QE lifetime
 - Polarization
- Recent/future activities at SLAC's GTL:
 - Samples of InAlGaAs/AlGaAs (measurements done)
 - Internal graded sample Al_xGa_(1-x)As/GaAs
 - To demonstrate full charge production once it is mated to ILC and CLIC lasers
 - Funded R&D programs on new cathodes
- GTL is also available for other R&D projects, such as test different electrodes and guns.

SLAC's GTL layout

InAlGaAs/AlGaAs: QE uniformity

InAlGaAs/AlGaAs: QE lifetime

Only difference:

7-632 12 periods active layers

7-635 8 periods of active layer

InAlGaAs/AlGaAs: bandgap

InAlGaAs/AlGaAs: polarization measurements

InAlGaAs/AlGaAs: polarization vs surface charge limit

Surface photovoltaic effect - surface charge limit

- Photon absorption excites electrons to conduction band
- Electrons can be trapped near the surface
- Electrostatic potential from trapped electrons raised affinity.
- Increased affinity decreases emission probability.

Surface charge: laser energy

0.73x10¹⁰e- @ 1x laser energy 10 mm full size

2.5x10¹⁰ e- @ 8x laser energy 10 mm full size

Surface charge: laser location

2.5x10¹⁰ e- production 10 mm full size @ good location 1.4x10¹⁰ e- production 10 mm full size @ bad location

Charge limit: laser energy

10 mm laser full size

Charge limit: beam size

- Space charge (Child's law) $J_0 = (2.33 \times 10^{-6}) \text{V}^{3/2} / \text{d}^2$ $J_0 = 10 \text{ A/cm}^2$ @ GTL gun
- Take beam parameters d=5mm, Q=3.75 nC, 300 ns, J₀=0.06 A/cm²
- Space charge negligible at current conditions; thus surface charge limit dominates at smaller size with 7x10¹⁸/cm³ of doping at the surface layer.

Surface charge: pulse length

same laser energy 10 mm laser full size And what about at 1 ns?

What's the possible indications from the measurements for ILC and CLIC: surface charge & space charge?

	ILC	CLIC
Microbunch	300 ns →1 ns	300 ns \rightarrow 100 ps
	Surface charge better	Surface charge better
	Space charge worse	Space charge much worse
Macropulse	1 ms (360 ns spacing)	156 ns (0.5 ns spacing)
	Accumulated surface charge may be much worse?	Surface charge may accumulate
Current	1.5 A/cm ²	3.0 A/cm ²
intensity	Surface charge and space	Space charge serious;
(r=1cm)	charge combined;	Surface charge may
	Surface charge may be serious in macropulse?	accumulate in macropulse

Summary and plans

- Measurements for InAlGaAs/AlGaAs cathode at SLAC:
 - 0.2-0.3% QE but can be increased to 1% level after Atomic hydrogen cleaning.
 - QE lifetime is very long >400 hrs!
 - 86% polarization compared with 93% of Russian data
 - However, surface charge limit is observed, current intensity 0.06 A/cm² @ 7x10¹8/cm³ of doping in surface. We need to tune the cathode parameters.
 - First observation of polarization dependence on surface charge limit.

Summary and plans (con't)

- To demonstrate full charge production (surface charge and space charge) for the ILC once its laser ready. The ILC laser expected ready in the early of next year.
- To improve baseline cathode GaAs/GaAsP in the next few yrs with SBIR supports:
 - Study doping level in the structure of GaAs/GaAsP
 - Gradient doping in the active layer
 - Apply both techniques into GaAs/GaAsP
- To study alternate cathodes: tune InAlGaAs/AlGaAs parameters

Doping level in GaAs/GaAsP

- Doping level at least affects:
 - Smearing band edge and broadening hole spectrum
 - Spin relaxation in transport stage; BAP process
 one of major mechanisms -, exchange interaction between electrons and holes:

$$\frac{1}{\tau_{s}} = N_{h} \sigma_{BAP} \nu$$

- Spin relaxation in BBR
- Surface charge limit

Gradient doping in the active layer

- Electrons are accelerated when getting through bandbending regions
- High QE expected
- Much interest in gradient doping in the active layer of SL structure.

Summary and plans (con't)

- To demonstrate CLIC-like beam production by using existing 76 MHz ML oscillator (13 ns spacing) or real CLIC laser.
- SLAC's dc-Gun Test Lab with multi-lasers is a worldwide unique diagnostic to characterize polarized photocathodes for both ILC and CLIC: charge limit, polarization, QE, and QE lifetime.