Experimental verification of the effectiveness of linear collider system identification and beam-based alignment algorithms

Andrea Latina (CERN) for the T-501 team:

A. Latina (CERN), E. Adli (SLAC/CERN/Oslo), G. De Michele (CERN)
J. Pfingstner (CERN), D. Schulte (CERN)

In collaboration with F.J. Decker and N. Lipkowitz (SLAC)

Motivation

- The performance of future linear colliders will critically depend on beam-based alignment (BBA) and feedback (FB) systems
- BBA is a tool for mitigating static imperfections and allow the transport of low emittance beams
- Advanced FB systems are vital to preserve beam quality in time, against vibrations and slow drifts - they are based on BBA algorithms
- DFS techniques have never actually been tested on a real linear machine

Simulation of BBA at FACET: Orbit and Dispersion Correction

DFS - x

45

40

10

5

0

200

400

600

s [m]

800 1000 1200 1400 1600 1800 2000

[mm] ဒ

Relevant beam parameters at injection

Symbol	Value
$\gamma \epsilon_x$	$3.0 \cdot 10^{-5} \text{ m} \cdot \text{rad}$
$\gamma\epsilon_y$	$0.25 \cdot 10^{-5} \text{ m} \cdot \text{rad}$
σ_z	1 mm
σ_E	1%
q	3.24 nC
E_0	$1.19 \mathrm{GeV}$

Emittance growth with static imperfections, after beam-based alignment. The result is the average of 100 random seeds.

Misalignment and BPM precision values

Symbol	Value, RMS
$\sigma_{ ext{quadrupole offset}}$	$100~\mu\mathrm{m}$
$\sigma_{ m bpm~offset}$	$100~\mu\mathrm{m}$
$\sigma_{ m bpm\ precision}$	$5 \mu \mathrm{m}$

Simulations made with PLACET

Goals of T-501

Experimental verification of the effectiveness of linear collider system identification and beam-based alignment algorithms

System Identification:

- Automatic On-line reconstruction of the Optics Model
 - Response matrix measurement

Beam-based Alignment:

- Reduction of emittance dilution using simultaneous correction of orbit and dispersion
- Heavily relies on the goodness of the aforementioned System Identification algorithms

Summary of the beam-time we got

In 2012 we got beam-time twice:

 April 13-15: thunderbolt, but we managed to measure the orbit response during one owl shift

• June 4-6, we got three shifts:

Friday night: from 20:00 to 4:00 8h (supported*)

Saturday night: from 24:00 to 8:00 8h

Sunday night: from 24:00 to 4:00 4h

(*) F.J. Decker and N. Lipkowitz

Section of linac we focused on

1150 m – 1650 m (> 4 betatron oscillations) – about 500 m of linac. Only e- correctors used. Disregarded e+ correctors.

After some tweaking: our system had 31 correctors (in total, X and Y); 37 BPMs.

Measurement of the Golden Orbit

Average BPM resolution over 100 pulses, after filtering:

Sx = 3.3 microm

Sy = 2.5 microm

Response measurement

- * Automatic response measurement procedure developed :
- For each corrector do +/-, measure 100 samples (increase effective BPM res)
- Iterate loop through correctors; second iteration uses amplitude of 1 mm
- Result from each iteration is combined in a mathematically optimal way
- * Time: 2 hours for 33 correctors
- * Some coupling observed
- Applied to the correction
- * Responses demonstrated to be valid one shift later (24 hours later)

(Above) Identified Rxx response matrix for a section of the linac (17 correctors, 48 BPMs)

Rxx, Rxy, Ryx and Ryy. Some coupling is observed (some spikes can also be due to jitter during the measurement).

System Identification and BBA Simulation

Left: Speed of convergence assumed BPM resolution = 10 um (1 iteration = 15 seconds)

Right: Emittance growth after dispersion-free steering with imperfect model, compared to the case with perfect mode. The results are the average of 1000 random seeds.

Orbit correction - principle

Linear response matrix from corrector j to BPM i:

$$R_{ij} = \frac{\partial y_i}{\partial \theta_j}$$

The measured linear response includes all linear effects in the system:

- Quadrupole offsets (inducing dipole kicks)
- Dipole wake from beam offset in acc. Structures

The response is found by difference measurements; is independent of absolute orbit.

Correction that finds the global solution, through the LS-inverse

$$\min_{\Delta\theta} = ||\mathbf{y} - \mathbf{R}\Delta\theta|| \rightarrow \Delta\theta = -R^{\dagger}\mathbf{y},$$

Need a way to take out correction directions due to noise in the measurement. We use a

straight SVD-cut.

Very little information in the low sing.val. directions -> huge corrector strength needed to make a small adjustment to correction -> ignore these directions.

Orbit correction - results

Dispersion Correction – principle

Besides minimizing orbit, we minimize the difference between the nominal orbit and the dispersive orbit. We also need to constraint nominal orbit. Weighted solution; weight for difference orbit $^{\sim}$ BPM $_{\rm acc}$ / BPM $_{\rm res}$.

$$\chi^2 = w_0^2 \Sigma y_{0,i}^2 + w_1^2 \Sigma (y_{1,i} - y_{0,i})^2.$$

Need to solve the following system of equations:

$$\begin{pmatrix} y - y_0 \\ \omega(\eta - \eta_0) \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{R} \\ \omega \mathbf{D} \\ \beta \mathbf{I} \end{pmatrix} \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_m \end{pmatrix}$$

This reduces to a LS-problem, analogous to the orbit correction.

Parameter ω accounts for the relative weight to give to orbit and dispersion correction, β is a regularization parameter to better condition the response matrices.

$$\omega^2 = \frac{\sigma_{\rm bpm\ resolution}^2 + \sigma_{\rm bpm\ position}^2}{2\sigma_{\rm bpm\ resolution}^2}$$

Dispersion generation

- Energy difference was induced offsetting the RF-phase of 1 klystron 'KLYS:LI10:61' by 90 degrees
 - This induced a -1.3% energy difference at the end of the linac, about 300 MeV
 - (simulations showed that it is sufficient)

• Dispersion response is: D = R1 - R0

Need to measure dispersive responses (2 hours more of measurEment).

Dxx : less precise towards end

Rxx for comparison

Dispersion correction – results 1

First dispersion correction (success?)

Initial attempts showed algorithm in principle worked well; however, not always reproducible.

Dispersion correction – results 2

We started from the dispersion of the golden orbit (10-20 mm).

We had several results where the dispersion did not converge well.

As in this example: we start with a given dispersion, and end up with a significantly worse.

Moreover, the expected correction for next iteration is also significantly worse than what we started with.

-> was a mystery!

Dispersion correction – analysis

A careful post-mortem analysis of the above data showed what happened:

- drifts upstream the bin slightly changed the orbits between iterations (not unexpected)
- we did not manage to go back to the better orbit we started with (unexpected)
- the reason: the upstream drift induced a perturbation in the orbit that is not correctable with our selection of correction; inside the null-space of the (total) R⁺
- we have 31 correctors (variables) and 148 constraints (37 BPMs x 2 x 2); large nullspace
- We expect that using more correctors we will get better performance

$$\begin{pmatrix} b - b_0 \\ \omega(\eta - \eta_0) \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{R} \\ \omega \mathbf{D} \\ \beta \mathbf{I} \end{pmatrix} \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_m \end{pmatrix}$$

Summary CERNBBA nullspace issue:

- * The DFS algorithm tries to solve an over-determined system with 31 variables, \mathbf{c} , (correctors) to satisfy 148 equations, \mathbf{y} , (X, Y orbit and X, Y difference orbigt for each of the 37 BPMs). The relation is given by the total response (orbit and difference), \mathbf{R} .
 - * It can only do this in the least square sense with solution

$$min_{\mathbf{c}} \parallel \mathbf{y} - \mathbf{Rc} \parallel$$

where the correction is found by the solving using the pseudo-inverse

$$\mathbf{c} = \mathbf{R}^\dagger \mathbf{y}$$

Because the system is over-determined there is a space of vectors \mathbf{y}^0 that cannot be corrected because they are in the nullspace of \mathbf{R}^{\dagger} :

$$\mathbf{R}^{\dagger}\mathbf{y} = 0$$

This nullspace is rather large because of the 31/148 ratio.

I confirm that for both slide 11 (perfect solution starting from iteration 4) and slide 13 (perfect solution starting from iteration 4), I find that

$$\parallel \mathbf{y} \parallel \neq \mathbf{0} \wedge \parallel \mathbf{R} \parallel \neq 0, \mathbf{R}^{\dagger} \mathbf{y} = 0$$

This confirms that drift seen between iteration 3 and iteration 4 is indeed in the nullspace of \mathbf{R}^{\dagger} , thus uncorrectable.

Dispersion correction – results 3

Using the same number of correctors but $^{\sim}$ half the numbers of BPM we managed to reduce the dispersion below the initial (to $^{\sim}$ 5 mm) for 300 m of the linac.

Performance still limited by jitter.

To improve performance, also for a larger part of linac :

- need more correctors (more measurement time)
- the more upstream the better (ideally: whole linac)
- analyze sources of jitter

Summary

- Demonstrated automatic machine identification: about 3.5+3.5 minutes/ corrector (nominal + dispersive) -> 4 hours for 33 correctors. Can possibly be optimized.
 - need factor ~4-8 more correctors for whole linac. Exactly how many to be studies with simulations.
- Demonstrated converged orbit correction on 500 m of linac from arbitrary generated orbit bumps back to golden orbit, within ~ 10 um.
 Repeatable with day-old machine identification. Feed-forward to keep downstream machine in place worked perfectly.
- Demonstrated principle of dispersion correction, however, did not manage to improve the present dispersion over the whole 500 m testsection of the linac. Got improved results when reducing the number of BPMs per corrector. Ultimate performance sees limited by jitter.
- Progress of the experiment was significantly enhanced when FACET physicists were present (FJD and Nate); it is not ideal to work alone during weekend owl shifts for this kind of experiment.

Future steps

- **Demonstrate a clear reduction in dispersion, over a larger section of the linac** (> 500 m), by inducing dispersion bumps If necessary, and see a clear stable convergence
- Demonstrate a clear reduction in emittance by applying this dispersion correction
- Study new optics (weak lattice) to find a good number of correctors / BPMs and optimal performance. Study more carefully the amount of jitter and its effect.
- Requires more beam time; ideally in 12 hours blocks (larger responses).
- We plan to apply for more beam time in 2013
- We hope for the continued support and collaboration with FACET machine physicists

Acknowledgments

- Uli Wienands and Christine Clarke for their prompt support, guidance and patience throughout the entire process and during the preparatory trips
- Nate Lipkowitz and Franz-Josef Decker: Nate for his precious work on the Matlab interface for SCP, Franz-Josef for his invaluable contribution
- The entice MCC team and the FACET Collaboration for their helpful and support during the shifts