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Physics Goals of Linear Collider

The main goals of the LC physics programme are:
e precise measurements of the properties of the Higgs sector;
e precise measurements of the interactions of top quarks, gauge bosons, and new particles;

e searches for physics beyond the Standard Model (SM), where, in particular, the discovery reach of the
LC can significantly exceed that of the LHC for the pair-production of colour-neutral states; and

e sensitivity to new physics through tree-level or quantum effects in high-precision observables.
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Goals of the Higgs Boson Study

What are the couplings of this particle to other known elementary particles? Is its coupling to each
particle proportional to that particle’s mass, as required in the SM by the Higgs mechanism?

What are the mass, width, spin and CP properties of this particle?

What is the value of the particle’s self-coupling? Is this consistent with the expectation from the
symmetry-breaking potential?

Is this particle a single, fundamental scalar as in the SM, or is it part of a larger structure? Is it part of
a model with additional scalar doublets? Or, could it be a composite state, bound by new interactions?

Does this particle couple to new particles with no other couplings to the SM? Is the particle mixed
with new scalars of exotic origin, for example, the radion of extra-dimensional models?

Brau et al., ‘12




Some Higgs Boson Production Modes at LC

Linssen et al., 1202.5940



Higgs boson Production Cross-Sections
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Higgs boson production event rates

Brauetal., ‘12
250GeV  350GeV  500GeV  1TeV 1.5TeV 3TeV
o(ete” — ZH) 240 fb 129 fb 57 fb 13 fb 6 fb 1 b
o(ete” — Hveve) 8 fb 30fb 75 tb 2101b 309 fb 484 fb
Int. £ 250tb~!  350fb~!  500fb~! 1000fb~! 1500fb~' 2000 fb~!
# ZH events 60,000 45,500 28,500 13,000 7,500 2,000
# Hv,.V, events 2,000 10,500 37,500 210,000 460,000 970,000

Table 1: The leading-order Higgs unpolarised cross sections for the Higgs-strahlung and WW-fusion pro-
cesses at various centre-of-mass energies for myg = 125 GeV. Also listed is the expected number of events
accounting for the anticipated luminosities obtainable within 5 years of initial operation at each energy.

Precision scales at best with 1/Sqrt[Events]. Need “tens of thousands” of events to
have chance for < 1% measurements. This is achieved with the contemplated

luminosities.




Recoil Mass Measurement
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Figure 2: The recoil mass distribution for e"e™ — ZH — pu*u H events with mg = 120GeV in the ILD
detector concept at the ILC [6]. The numbers of events correspond to 250 fb~! at /s = 250GeV, and the
error bars show the expected statistical uncertainties on the individual points.

5 250GeV 350 GeV
Int. £ 250fb~!  350fb~!
Alo)/o 3% 4 %
A(guzz)/9uzz | 1.5% 2%

Table 2: Precision measurements of the Higgs coupling to the Z at +/s = 250 GeVand +/s = 350 GeV based
on full simulation studies with my = 120 GeV. Results from [6] and follow-up studies.

[6] Abe et al. [ILD Concept Group], Letter of Intent, 1006.3396.



Higgs Measurements at Various Energies

250/350GeV  500GeV' 3TeV
o X Br(H — bb) 1.0/1.0 % 0.6 % 0.2 %
o X Br(H — cc) 7/6 % 4 % 3%
o X Br(H — 11) 6*/6 % 5% ?
o X Br(H - WW) 8/6 % 3% ?
o X Br(H — pw) —/- ? 15 %
o x Br(H — gg) 9/7 % 5% ?

250/350GeV  500GeV'™ 3TeV

gHbb 1.6/1.4 % ? 2 %
JHce 4/3 % 2 % 2%
JHrr 3*/3% 2.5% ?
JHWW 4/3 % 1.4 % < 2%
JHup —/= — 7.5 %
g ?/? ? <1%"*

JHZZ

JHit o 15 % ?

Table 3: The precision on the Higgs branching ratios and couplings obtainable from studies of the Higgs-
strahlung process at a LC operating at either /s = 250GeV, /s = 350GeV and +/s = 500GeV. The
dagger on the 500 GeV columns indicates that the quoted numbers are based on projections to be updated
in [7]. The uncertainties on the couplings include the uncertainties on gygzz obtained from the absolute
measurement of the ZH cross section. Also shown are the precisions achievable from the WW fusion
process at a LC operating at 3 TeV. The numbers marked with asterisk are estimates, all other numbers come
from full simulation studies with myg = 120 GeV. The question marks indicate that the results of ongoing
studies are not yet available. In all cases the luminosities assumed are those given in Table 1.

Brau et al., ‘12



TABLE IV: Cut statistics of e™ + e~ — ZHH — (I1)(bb) (bd)

s Self-Coupling

M, =120 GeV
E__=500 GeV
L=2 ab!

Process JHH tt 2272\ WWZ| 77 ZH
generated IM | 4.5M |[500K| 750K | 1.256M | 250K
theoretical 304 |[1062000| 1600 | 72300 |{1030000|140000

pre-selection 15.4 | 9023 | 125 | 1943 | 3560 | 1618
muva_tt > 0.98
mva_wwz > 1.0
mva-zz > 0.97 11.7 312 12.9 | 12.7 16.5 5.6
muva_zh > 0.97
muva_zzz > 0
70GeV < My < 110GeV| 9.7 106 11.7 | 7.5 16.5 0.56
Yeur > 0.015 9.1 91.3 |10.6| 6.9 6.6 0
2b(H1)(Nops > 0) 6.3 28 5.5 1.8 0 0
20(H2)(Nosp > 1) 3.5 0.71 2.3 0 0 0
mva_zzz > 0.86 3.0 0 0.82 0 0 0

Tian et al., ’10

See also,
Lastovicka’s talk
at this meeting

Events after all cuts



Tests of the SM Higgs Boson
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Figure 4: Left: Typical deviations of the Higgs couplings to different particles from the SM predictions 1n a
Two-Higgs-Doublet model. The LC precisions for the vanous couplings are the same as in Figure 3. Right:
Determination of the admixture 77 of a CP-odd state in e'e™ — ZH at 5 = 350 GeV wath 500 fb~', using
the measurement of the cross section together with an “optimally chosen’ CP-odd observable.
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LHC Direct

LHC: WW scattering and strong
double Higgs production
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CLIC SUSY Higgs Mass Reach
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Top Physics

tt threshold - 1s mass 174.0 GeV
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The tf production cross-section scan near the threshold, leading to 30 MeV|determination of
the top mass. The study is based on full simulation of the ILD detector and includes initial state radiation,

beamstrahlung and other machine-induced effects



Where is New Physics?

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: March 2012)

Large ED (ADD) : monojet
Large ED (ADD) : diphoton

I LU II
Mp (8=2)

Mg (GRW cut-off)

Compact. scale 1/R (SPS8)

g RS with k/M,, = 0.1 : diphoton, /.. Graviton mass
g RS with k/M;, = 0.1 : dilepton, m, Graviton mass
£ RS with k/M;, = 0.1 : ZZ resonance, my, Graviton mass
§ RS with g o/ 9=0:20 tt — I+jets, m, KK gluon mass
& ADD BH (M3%fW1,=3) : multijet, p_, Ny Mp (5=6)

ADD BH (M, /Mp=3) : SS dimuon, Ny, ;an My (6=6)

ADD BH (M, /M,=3) : leptons + jets, =p My (6=6)

Quantum black hole : dijet, F (m, M (5=6)
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uutt CI : SS dilepton + jets + E s A
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o Techni-hadrons : dilepton, m__
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*Only a selection of the available mass limits on new states or phenomena shown
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ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 2012)

MSUGRA/CMSSM : 0-lep +j's + E7 s
MSUGRA/CMSSM : 1-lep +j's + E s
MSUGRA/CMSSM : multijets + E s
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New Physics (NP) Targets

At present no compelling higher energy (> higgs,top scale) target
for direct NP.

NP considerations then argue for “highest energy achievable” with
appropriately scaled luminosity.

No “Physics Case” can be made directly from NP considerations.
However, the “Physics Potential” can be detailed.

Study “best” NP scenarios of today and ask if LC at some energy
and luminosity can provide substantial, important and qualitative
gains over previous experiments (LHC, etc.).

Studies have shown very strong “Physics Potential” for LC, with
that potential increasing with collision energy.
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Figure 5: Left: Cross section at threshold for the production of the superpartners of the right-handed muons
at the LC, e"e™ — [igfig, from which the spin of the produced particles can be determined and their mass
can be precisely measured (limited by statistics; the plot shows a ‘difficult’ scenario with backgrounds
from other light SUSY particles). Right: Determination of the chargino mixing angles cos 2¢1, g from LC
measurements with polarised beams and at different centre-of-mass energies.

Le Diberder et al., "12



Lebrun et al., ‘12

Supersymmetry Example

Neutralinos (xl 23, 4) . 357,487,904, 911
Charginos ()(1 2) . 487,911
Sleptons (g, ér, V.) : 559, 650, 644
(%1, T, V) : 517,642,630
Gluino (g): 1114
Squarks (71, f, bl, by): 844, 1120, 1078, 1191
(dR, uR, dL, ML) . 2167, 2181, 2197, 2196
Higgs Bosons (h°, A?, HY, H*): 118,765, 765, 769
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Stau mass determination
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Fig. 6.5: Reconstructed 7 energy after event selection with a BDT. Signal and background histograms are
stacked (left). x? values for templates with different 7 mass assumptions compared to the reconstructed
energy distribution. The measured T mass is given by the minimum of the distribution. The generated

T mass is 517 GeV (right).

Lebrun et al., 12



Table 6.3: Summary table of the CLIC SUSY benchmark analyses results obtained with full detector
simulations with background overlaid. All studies are performed at a centre-of-mass energy of 1.4 TeV
and for an integrated luminosity of 1.5 ab™ .

VS Process Decay mode SUSY Measured Unit Gene- Stat.

(TeV) model quantity rator  error
value

o b 1.11 2.7%

DAty — prpx0%0  mass GeV 560.8 0.1%

2Ymass  GeV 357.8 0.1%

Sleptons (0] b 5.7 1.1%

1.4 production ege, — eTe XU A) 1 ¢ mass GeV 558.1 0.1%

2V mass  GeV 357.1 0.1%

(o) b 5.6 3.6%

VeVe — X070t e WHW— 7 mass GeV 6443 2.5%

Zi mass GeV 487.6 2.7%

Stau i~ 4 ~0~p Tymass GeV 517  2.0%
L4 production hh TTT L i o fb 2.4 7.5%
Chargino  ~,~_  ~g~0u s Xi mass GeV 487  0.2%
|, production e —naWew - G fo 153  13%
Neutralino -~ 01 10 ~0~0 x)mass  GeV 487  0.1%
production 0 = 22 o fb 5.4 1.2%

Lebrun et al., "12



Z’ physics: Extraordinary discovery reach (well beyond LHC), and
simultaneous capability to determine couplings and discern models.
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Fig. 1.16: Left: Observation of new gauge boson resonances in the "~ channel by auto-scan at 3 TeV.
The two resonances are the Z;, predicted by the 4-site Higgsless model of [67]. Right : Expected
resolution at CLIC with /s =3 TeV and .Z = 1 ab™! on the “normalised” leptonic couplings of a
10 TeV Z' in various models, assuming lepton universality. The couplings can be determined up to a
twofold ambiguity. The mass of the Z’ is assumed to be unknown. y,7 and y refer to various linear
combinations of U(1) subgroups of Eg; the SSM has the same couplings as the SM Z; LR refers to
U(1) surviving in Left-Right model; LH is the Littlest Higgs model and SLH, the Simplest Little Higgs
model. The two fold ambiguity is due to the inability to distinguish (a,v) from (—a, —v). The degeneracy
between the y and SLH models might be lifted by including other channels in the analysis (tt, bb, ...).
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2
Extreme sensitivity (>> LHC) to L= ) nij%(éi}”uei) (finefi)
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Fig. 1.14: Limits on the scale of contact interactions (A /g) that can be set by CLIC in the p "~ (left) and
bb (right) channels with \/s =3 TeV and ¥ = 1 ab~!. A degree of polarisation P_ = 0,0.8 (P, = 0,0.6)
has been assumed for the electrons (positrons). The various models are defined in Table 6.6 of [20],
except the model V1 which is defined as {n.. = =, Nrr = F. Nr =0, Nr. = 0}. 29



Conclusions

Excellent opportunities to study Higgs, top and New Physics at
many energy stages from 240 GeV on upwards.

Clear “physics case” for LC studying to death the Higgs boson
and top quark in energy range of 240 GeV to ~600 GeV (from ZH
maximum cross-section to Htt maximum cross-section).

Clear “physics potential” for LC exploring NP in the range of LHC
discoveries and beyond, for energies of ~1 TeV and beyond.



