Neutron background from the beam dump Systematic studies

Hayg Guler, Marc Verderi LLR-Ecole Polytechnique

FJPPL-FKPPL workshop LAL, March 19-20, 2012

Outline

- Neutron background measurements
- Access detector responses to neutrons (December 2011 measurements)
- Evaluate systematic effects sources
- Extract the measured neutron production
- Compare to GEANT4
- Conclusion

Neutron production @ different eincident energy on iron

- Most of the neutrons are produced via photo-nuclear effect
- Produced neutron kinetic energy mainly < 10 MeV
- ATF2 can produce the major part of the neutron spectrum accessible at 500 GeV

Previous measurements

Open questions concerning data/MC comparaison

- Possible origins of the differences :
 - Neutron (photo-)production not well simulated ?
 - Could be tested by measuring the most energetic neutrons which are the one who had the less interactions inside DUMP.
 - Very difficult to measure (due to E.M background), need precise knowledge of the DUMP hole geometry, materials
 - Neutron transport inside the DUMP ?
 - Tested by comparing G4/Data but strongly depends on neutron production
 - Detector response to neutrons?
 - Purpose of Dec 2011 Measurements

Detector response measurement principle

First measurement:

D1 signal:

Extract D3 response and neutron flux

$$R_1(t) = rac{S_1^I(t)}{S_1^{II}(t)}$$
 Ratio of D1 Responses
$$= rac{\phi(t)(1-arepsilon_3(t))arepsilon_1(t)}{\phi(t)arepsilon_1(t)}$$

$$= 1-arepsilon_3(t)$$

Extract D3 response

$$S_3(t) = \phi(t)\epsilon_3(t)$$

$$= \phi(t)(1 - R_1(t))$$

From D3 signal and D1 signal ratio

$$\phi(t) = \frac{S_3(t)}{1 - R_1(t)}$$

Extract neutron flux

December 2011 measurements

Dump right side

4.4m / Dump

Normalizations

- Different runs depending on the beam currant entering the DUMP
 - Need to normalize using current entering DUMP
 - ICTDUMP
 - Taken from EPICS : atf2_monitors[613]
 - Need error on that quantity
 - Use modules sensitive to neutron signal :
 - When measuring from right dump use modules @4m from dump to normalize
 - But only use neutron part of the WF signal. E.M part paf the signal might have different dependence.

Beam current vs Deposited charge

- Seem ok : same tendency
- Normalize using beam current might be reasonable
- But :

Let's try to normalize using the average beam current @ each 50 triggers

Beam current vs Deposited charge

- Normalization seems to enhance the RMS artificially
- Could be the noise from DUMP current monitor
- Proposed solution :
 - Normalized using the mean beam current
 - For each 50 triggers

- 3-New-P response measured
- As seen from plastic modules
 1-New-P and 2-New-P
- Used 3 types of normalizations :
 - ICTDUMP
 - Modules from Group2 (@ 4.4m from dump):
 - Neutron signal waveform Maximum Amplitude
 - Neutron signal waveform Integral

- Module Response :
 - Positive means absobtion
 - negative means emission.
 - Y axis label * 100 = absobtion value in %

- 3-New-P response measured
- As seen from plastic modules
 1-New-P and 2-New-P
- Used 3 types of normalizations :
 - ICTDUMP
 - Modules from Group2 (@ 4.4m from dump):
 - Neutron signal waveform Maximum Amplitude
 - Neutron signal waveform Integral

Norm, with ICTDUPM

0.5

-0.5

Cyan band covers E.M. part

0.5

10

time (µs)

- Module Response:
 - Positive means absolution
 - negative means emission.
 - Y axis label * 100 = absobtion value in %

0.5

-0.5

3-New-P response from 1-New-P

Norm. 4.4m det Integral

Plastic @ 11cm response measurement

- 3-New-P response measured
- As seen from plastic modules
 1-New-P and 2-New-P
- Used 3 types of normalizations :
 - ICTDUMP
 - Modules from Group2 (@ 4.4m from dump):
 - Neutron signal waveform Maximum Amplitude
 - Neutron signal waveform Integral

Plastic @ 11cm response measurement

- Module Response :
 - Positive means absobtion
 - negative means emission.
 - Y axis label * 100 = absobtion value in %

Csl response measurements

- 5-New-Csl response measured
- As seen from plastic modules
 1-New-P and 2-New-P
- Used 3 types of normalizations :
 - ICTDUMP
 - Modules from Group2 (@ 4.4m from dump):
 - Neutron signal waveform Maximum Amplitude
 - Neutron signal waveform Integral

Csl response measurements

- Module Response :
 - Positive means absobtion
 - negative means emission.
 - Y axis label * 100 = absobtion value in %

4-new-CsI response from 2-Old-CsI

- Csl efficiency extracted from Csl detector
- Efficiency measured to be at ~15% at its maximum value around 3 µs
- Error only includes WF jitter and some additional systematic error might be added

Geant4 predictions

- G4(QGSP_BIC_HP) predicts <20% efficiency
- Still limited statistic to draw a definite conclusion but it seems that the disagreement G4/data is not so pessimistic.

Conclusion

- Detector responses have been evaluated
- Systematic error are not totally under control
 - Need to understand the angular variation of neutron background
 - Need to put a systematic error on normalization
- First hints concerning GEANT4 capacity to simulate detectors efficiency.
- Still need some studies to understand where GEANT4 failes to describe neutron production signal exitting the DUMP