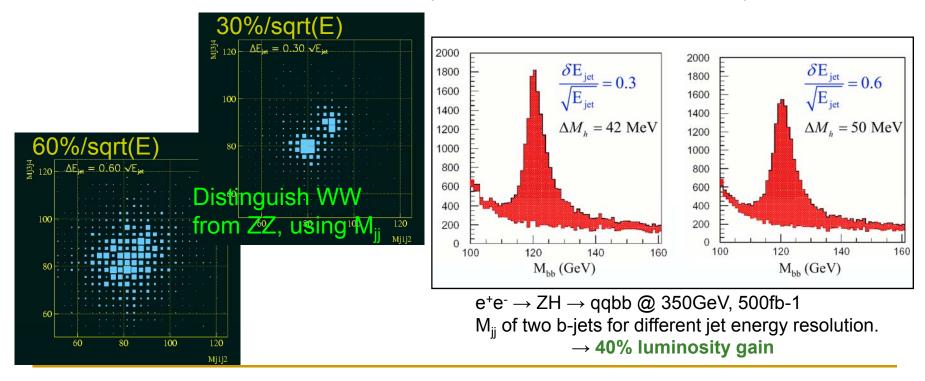
PFA Jet Energy Measurements

Lei Xia ANL-HEP

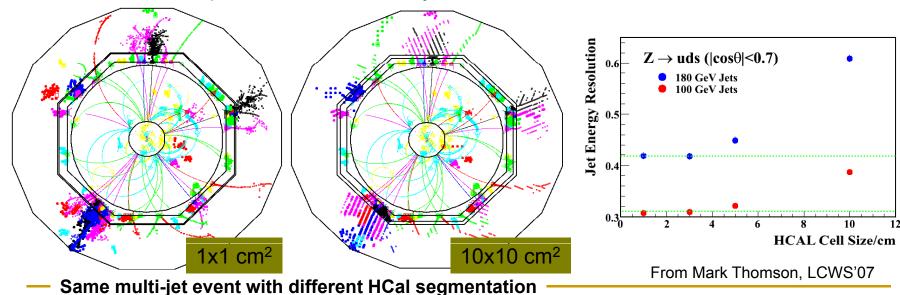

ILC requires precise measurement for jet energy/di-jet mass

Process	Vertex Tracking				Fwd		Very Fwd					\mathbf{P} ol.		
	σ_{IP}	$\delta p/p^2$	ϵ	δE	$\delta\theta,\delta\phi$	Trk	Cal	θ_{min}^e	δE_{jet}	M_{jj}	ℓ-Id	V^0 -Id	$Q_{jet/vtx}$	
$ee \rightarrow Zh \rightarrow \ell\ell X$		x									x			
ee o Zh o jjbb	x	x	x			x				x	x			
$ee \rightarrow Zh, h \rightarrow bb/cc/ au au$	x		x							x	x			
$ee \rightarrow Zh, h \rightarrow WW$	x		x		x				x	x	x			
$ee \rightarrow Zh, \ h \rightarrow \mu\mu$	x	x									x			
$ee \rightarrow Zh, h \rightarrow \gamma\gamma$				x	x		x							
$ee \to Zh, h \to \mathrm{i} nvisible$			x			x	x							
$ee \rightarrow \nu \nu h$	x	x	x	x			x			x	x			
ee o tth	x	x	x	x	x		x	x	x		x			
$ee \rightarrow Zhh, \nu\nu hh$	x	x	x	x	x	x	x		x	x	x	x	x	x
$ee \rightarrow WW$					(ic					x			x	
$ee \rightarrow \nu \nu WW/ZZ$						x	x		x	x	x			
$ee \rightarrow \tilde{e}_R \tilde{e}_R$ (Point 1)		x						x			x			x
$ee ightarrow ilde{ au}_1 ilde{ au}_1$	x	x						x						
$ee ightarrow ilde{t}_1 ilde{t}_1$	x	x							x	x		x		
$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1 \text{ (Point 3)}$	x	x			x	x	x	x	x					
$ee \to \tilde{\chi}_2^0 \tilde{\chi}_3^0 \text{ (Point 5)}$									x	x				
$ee \rightarrow HA \rightarrow bbbb$	x	x						8		x	x			
$ee ightarrow ilde{ au}_1 ilde{ au}_1$			x											
$\chi_1^0 \rightarrow \gamma + \cancel{E}$					x									
$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi_{soft}^{\pm}$			x					x						
$ee \rightarrow tt \rightarrow 6 \ jets$	x		x						x	x	x			
$ee \rightarrow ff \ [e, \mu, \tau; b, c]$	x		x				x		x		x		x	x
$ee \rightarrow \gamma G \text{ (ADD)}$				x	x			x						x
$ee o KK o far{f}$		x									x			
$ee \rightarrow ee_{fwd}$						x	x	x						
$ee o Z\gamma$		x		x	x	x	x							

- At LEP, ALEPH got a jet energy resolution of ~60%/sqrt(E)
 - Achieved with Particle Flow Algorithm (Energy Flow, at the time) on a detector not optimized for PFA
 - □ Significantly worse than 60%/sqrt(E) if used current measure (rms90, for example)
- This is not good enough for ILC physics program, we want to do a lot better!

ILC goal for jet energy resolution

- ILC goal: distinguish W, Z by their di-jet invariant mass
 - □ Well know expression: jet energy resolution ~ 30%/sqrt(E)
 - More realistic goal for high (>100 GeV) jet energies: flat 3-4% resolution
 - □ Combine the two: 30%/sqrt(E) up to 100 GeV (E_i or M_{ii}) and 3-4% above
- Most promising approach: Particle Flow Algorithm (PFA) + detector optimized for PFA (← a whole new approach!)



PFA: introduction

Measure jets in the PFA way...

Particles in Jets	Fraction of jet energy	Measured with				
Charged	65%	Tracker, negligible uncertainty				
Photon	25%	ECal, 15%/ √ E				
Neutral hadron	10%	ECal + HCal, ~50-60%/ √ E				

- Clear separation of the 3 parts is the key issue of PFA
 - Charged particle, photon and neutral hadron: all deposit their energy in the calorimeters
 - Maximum segmentation of the calorimeters is needed to make the separation possible
 - □ Calorimeter optimized for PFA is very different from traditional ← a lot of R&D needed!

PFA development is a major R&D issue

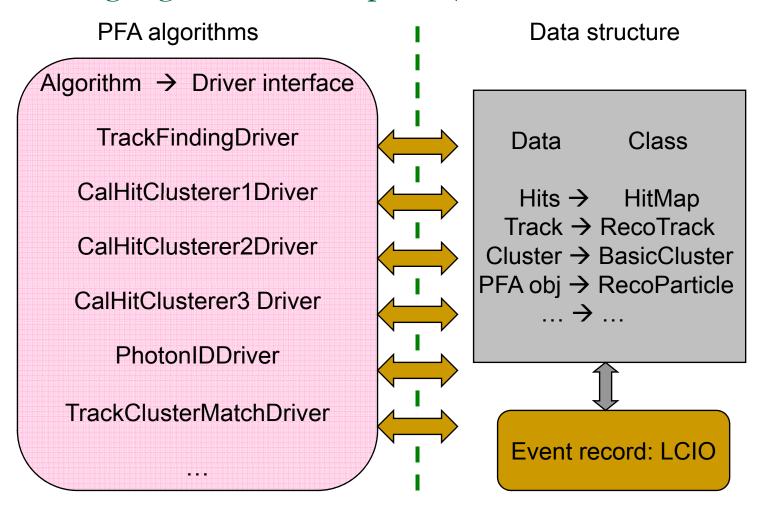
- Several really good PFA's are needed
 - □ PFA approach need to be validated by ≥ 1 real algorithms
 - PFA with required performance is a major tool for detector design:
 - PFA is the tool to assess a detector's performance
 - PFA is the tool to optimize detector design
 - But we need to be sure that we are not fooled by a poor PFA
 - Need to push PFA performance to its practical limit
 - Need to optimize PFA for each detector configuration and physics process
 - □ >1 independent PFA's will help to remove algorithm artifact
 - Realization of a really good algorithm turns out to be (much) more difficult than many of us expected
 - Need to get all individual steps right (and there are many of them!)
 - Progress occurs through iterations (smart developer + a lot of time are needed!)
- PFA development needs a reliable (hadron) shower simulation
 - Calorimeter test beam program will provide critical shower shape data to select/tune simulation
 - PFA study need to figure out a set of important shower parameters that affects PFA performance

PFA: contributors

Many US groups contribute to the PFA development

	Simulation infrastructure	Common tools	Individual algorithm	Complete PFA
ANL		√	√	√
lowa		√	√	√
Kansas			√	
NIU	√		√	√
SLAC	√	√	√	√

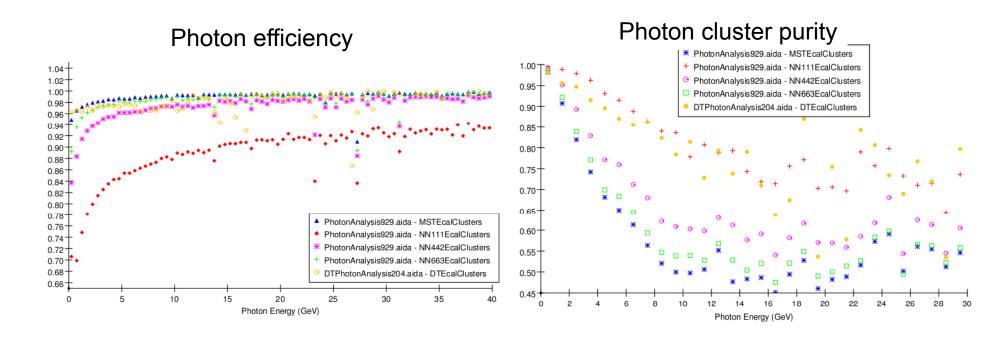
Currently, there are 4 fully implemented PFA's developed by US efforts


	Dijet 91GeV	Dijet 200 GeV	Dijet 500 GeV	ZZ 500 GeV
ANL(I)+SLAC	√			√
ANL(II)	√	√	√	
Iowa	√	√	√	√
NIU	√			

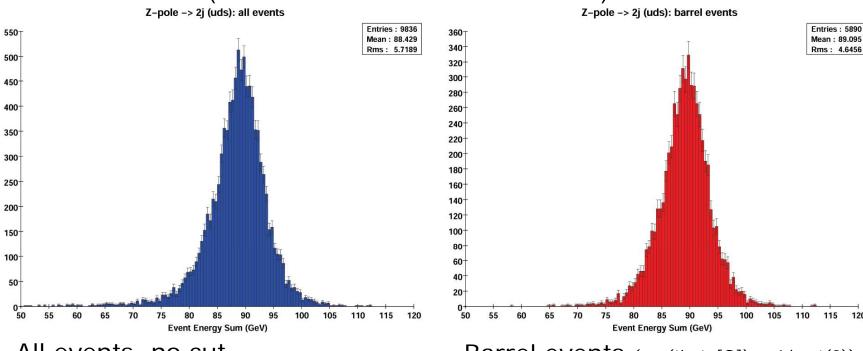
√: current focus

- Other efforts for PFA development
 - Pandora PFA, GLD PFA, Wolf PFA, Track based PFA, etc.

PFA: an example of a real implementation Calorimeter Hits Tracker Hits Clustering Track finding **Algorithm Algorithm Reconstructed Tracks** Calorimeter Clusters **Photon** Identification **Hadron Clusters EM Clusters** Track-cluster matching 'Neutral' Clusters Matched Clusters Charge fragment identification E/p check Fragments **Neutral Clusters** Hadron sampling EM sampling fraction fraction Total event energy June 19, 2007


Some highlights: PFA template (SLAC+IOWA+ANL)

- Enables e.g. algorithm substitution, CAL hit/cluster accounting
- A number of available common tools can be easily used from the template
- Ref: https://confluence.slac.stanford.edu/display/ilc/lcsim+PFA+guide


Some highlights: directed tree clustering algorithm (NIU)

- Cal-only clustering developed at NIU
- Hit selection: E > E_{MIP} / 4, and time < 100ns (applied before the clustering)
- Studied by Ron Cassell (SLAC)
 - Directed tree cluster has the best efficiency + purity for photon showers, among all tested clustering algorithms

PFA performance: e⁺e⁻→qqbar(uds) @ 91GeV (ANL)

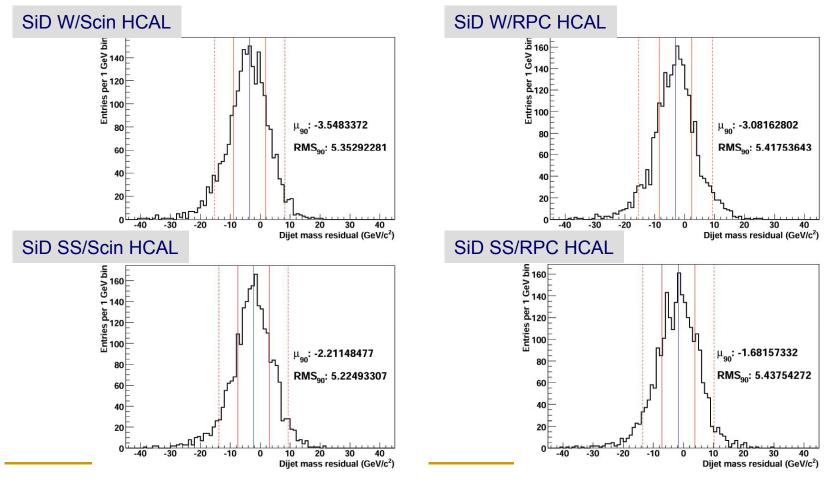
(rms90: rms of central 90% of events)

All events, no cut

Mean 88.43 GeV RMS 5.718 GeV RMS90 3.600 GeV

[38.2 %/sqrt(E)]

Barrel events (cos(theta[Q]) < 1/sqrt(2))


Mean 89.10 GeV RMS 4.646 GeV RMS90 3.283 GeV

[34.7 %/sqrt(E)]

Still not quite 30%/sqrt(E) yet, but very close now

PFA performance: $e^+e^- \rightarrow ZZ @ 500 GeV (IOWA)$

- $Z_1 \rightarrow$ nunubar, $Z_2 \rightarrow$ qqbar (uds)
- Di-jet mass residual = (true mass of Z_2 reconstructed mass of Z_2)
 - μ_{90} : mean of central 90% events
 - □ rms₉₀: rms of central 90% events

PFA performance: summary

rms ₉₀ (GeV)	Detector model	Tracker outer R	Cal thickness	Shower model	Dijet 91GeV	Dijet 200GeV	Dijet 360GeV	Dijet 500GeV	ZZ 500GeV ^b
ANL(I)+SLAC					3.2/9.9 ^a				
ANL(II)	0:0	1 2m	~5 λ	LCPhys	3.3	9.1		27.6	
lowa	SiD	1.3m							5.2c
NIU					3.9/11.ª				
PandoraPFA*	LDC	1.7m	~7 λ	LHEP	2.8	4.3	7.9	11.9	
GLD PFA*	GLD	2.1m	5.7 λ	LCPhys	2.8	6.4	12.9	19.0	
30%/sqrt(E)					2.86	4.24	5.69	6.71	(?)
3%				-	1.93	4.24	7.64	10.61	(?)
4%					2.57	5.67	10.18	14.14	(?)

^{*} From talks given by Mark Thomson and Tamaki Yoshioka at LCWS'07

- A fair comparison between all PFA efforts is NOT possible at the moment
- PandoraPFA (M. Thomson) achieved ILC goal in some parameter space
- US efforts: 30%/sqrt(E) or 3-4% goal has not been achieved yet, but we made a lot of progress during the last few years and we are much closer now

a) 2 Gaussian fit, (central Gaussian width/2nd Gaussian width)

b) $Z_1 \rightarrow \text{nunubar}, Z_2 \rightarrow \text{qqbar (uds)}$

c) Di-jet mass residual [= true mass of Z2 - reconstructed mass of Z2]

What's still missing? (and future plan)

- A really good PFA
 - We made a lot of progress, but we still need to push our PFA performance further, especially at high CM energies
 - We need to find good PFA for all the physics processes we are interested in:
 - ZZ → qqvv/qqqq, ZH, ttbar, ...
- Dependence of PFA performance on hadron shower models
 - □ Is shower simulation critical for PFA performance? (most likely yes!)
 - Is there a set of shower parameters that we can tune according to data, to guarantee a realistic PFA reconstruction?
- After getting a really good PFA
 - Start detector model comparison and optimization
 - B-field variations
 - ECAL IR variations
 - HCAL technology/parameter variations
 - Detector concept comparisons
- An extremely ambitious plan is to have all these done by the end of 2007
- But the biggest missing item is manpower
 - Most of PFA developers can only work on it part-time, with current support level
 - A significant increase in effort/support is needed to assure timely PFA development

Summary

- US PFA effort has made a lot of progress
 - Significantly improved PFA performance
 - Completed common tools and PFA template
- Current focus is to push PFA performance to its practical limit, especially at high CM energies
 - Try to achieve ILC goal for jet energy resolution
 - Collaborate with calorimeter test beam effort to verify simulation
 - Get ready for detector comparison/optimization
- Short of manpower is currently the biggest problem in PFA development
 - Need significant increase of support