Polarimetry

Testbeam Results, PD Linearity, and Prototype Design

Daniela Käfer daniela.kaefer@desy.de

- SLD Cherenkov detector in DESY testbeam
- What have we learned?
- Detailed Photodetector Measurements
 - Electronics (non)-linearity
 - Development of linearity methods: INL, DNL
- Prototype Design
 - How should it look like in the end?
 - Design & Construction
 - Simulation & Testing
- 4 Summary & Outlook

Reminder: We want to do precision physics

→ **need** precise measurement of beam polarisation

Hoping to achieve:
$$\frac{d\mathcal{P}}{\mathcal{P}}=0.25\%$$
 per beam.

whereas - from a physics point of view - it would clearly be better to measure even more precisely.

Different areas of work/development:

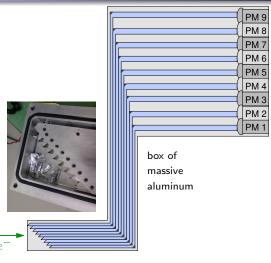
⇒ testbeam data analyses, linearity measurements of photodetectors (PDs) and readout electronics, prototype design & construction

Daniela Käfer

LCWS'08

16-20/11/2008

Testbeam, PD Linearity, Prototype Design

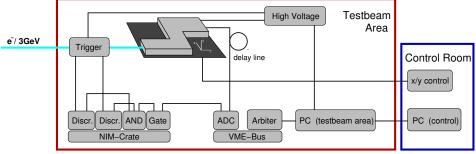

Testbeam Results:

SLD Cherenkov Detector

Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

SLD Cherenkov Detector

Cherenkov Detector:


has 9 channels made of polished aluminum & photomultipliers (R1398) for readout.

Testbeam Results Detailed Photodetector Measurements Prototype Design

Setup in the Testbeam Area

Summary & Outlook

November 2007

15 days: first time setup & tests

- unchanged; old PMTs
- ch.3 dead, ch.1+2 bad

December 2007

4 days right before christmas

 exchanged some PDs MAPMs(1,2,3) & SiPMs(6,8)

Both periods: using fast VME electronics for readout, especially: a 12-bit QDC with two ranges: 200 fC and 25 fC LSB ("least significant bit") Caveat: need to know QDC linearity very precisely to use its potential

Overview Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

SLD Cherenkov Detector Setup in DESY-II Testbeam

Daniela Käfer

LCWS'08

16-20/11/2008

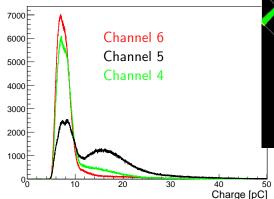
Testbeam, PD Linearity, Prototype Design

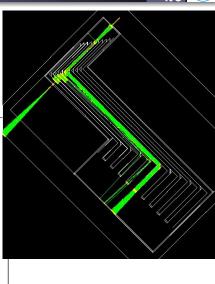
Detailed Photodetector Measurements

Testbeam with SLD Cherenkov Detector

November 2007: no changes done to the original SLD Cherenkov Detector using old PMTs, but our DAQ

- December 2007:
 - exchanged some photodetectors (PDs)
 - ▶ Multi-anode PDs: 1, 2, 3 to study different DAQ-modes
 - \triangleright SiPMs: 6, 8 (smaller, faster \rightarrow better?)
- study: reflectivity, crosstalk, and linearity (0° vs. 90° setup) etc.


Detailed Photodetector Measurements Prototype Design Summary & Outlook

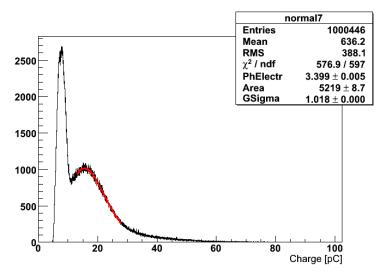

What we learned: Crosstalk

Crosstalk is asymmetric:

more in Channels to the left (4), less in Channels to the right (6) of the one with beam on (5).

Daniela Käfer

LCWS'08

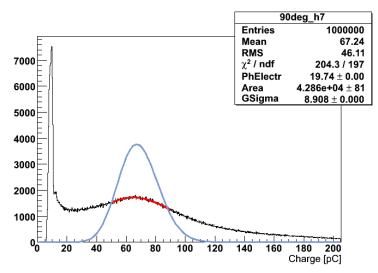

16-20/11/2008

Testbeam, PD Linearity, Prototype Design

Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

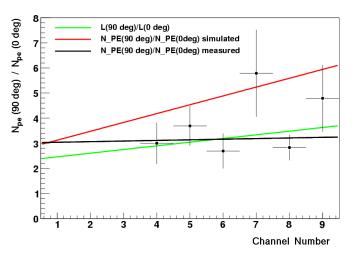
What we learned: Reflectivity & Linearity

Beam incident at 0° w.r.t. SLD Cherenkov channels.


Daniela Käfer

Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

What we learned: Reflectivity & Linearity



Beam incident at 90° w.r.t. SLD Cherenkov channels.

Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

What we learned: Reflectivity & Linearity

Compare $N_{pe} (90^{\circ})/N_{pe} (0^{\circ})$ with simulation (94% reflectivity) taking different channel lengths into account. \rightarrow Data prefer even flatter slope!

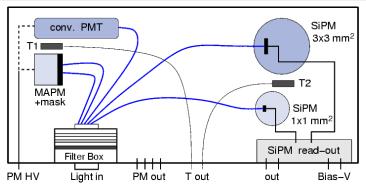
Compressed Testbeam Results

What have we learned from the two testbeam periods:

- Crosstalk probability should be kept as small as possible! ⇒ Room for improvement!
- Reflectivity of old SLD Cherenkov detector still surprisingly high! ... otherwise we would not have seen the small single electron signals from the DESY-II testbeam.

```
(might not be as important as thought before...)
```

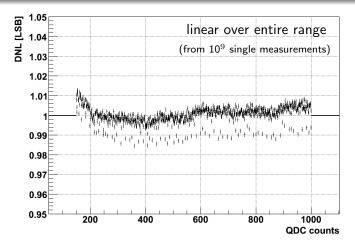
- Much more important is the linearity of the device:
 - not just for the channels (guiding Cherenkov photons towards the PDs)
 - but also the PDs themselves and the entire readout chain. thorough testing is still ongoing!
- Dark current should be narrow and NOT have a peculiar shape (had originally been optimized for high rates)


Linearity Measurements

Photodetectors:

Detailed Photodetector Measurements

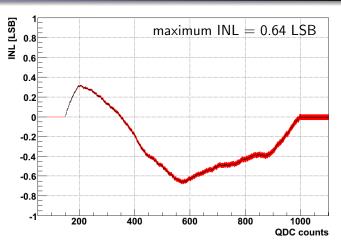
Test Bench for PD & Electronics Studies


- Light-tight box: fibers, filters, photodetectors (MAPMs, SiPMs)
- Blue LED ($\lambda = 470$ nm), controlled via a function generator
- DAQ: high resolution double range 12-bit QDC: 200 fC and 25 fC wide least significant bit (LSB) \rightarrow allows diff. readout modes!

Aim: measure & control the photodetector linearity to an order of 0.1%

estbeam Results
Detailed Photodetector Measurements
Prototype Design
Summary & Outlook

QDC: Differential & Integral Non-Linearity



Ramp @ 10 Hz with random read-out @ about 22 kHz (gate: 50 ns) Ratio of measured and uniform ideal distribution gives the DNL Differential Non-Linearity (DNL): deviation from ideal bin width

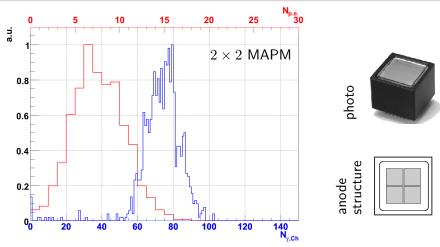
Daniela Käfer L

QDC: Differential & Integral Non-Linearity

Integral non-linearity (INL): summing up DNLs to the bin of interest

Daniela Käfer

LCWS'08


3'08 16-20/11/2008

Testbeam, PD Linearity, Prototype Design

Simulating the Photodetector Response

Summary & Outlook

- 5 million single events per measurement (not limited by systematics)
- Fit PD spectrum with a modified Poisson function → number of photoelectrons $N_{p.e.}$ (The reduced χ^2 -values are generally very good.)

Daniela Käfer

LCWS'08

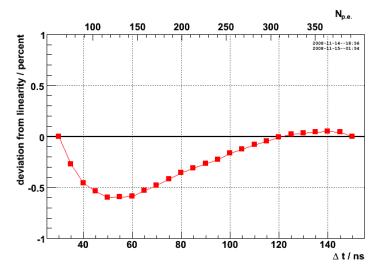
16-20/11/2008

Testbeam, PD Linearity, Prototype Design

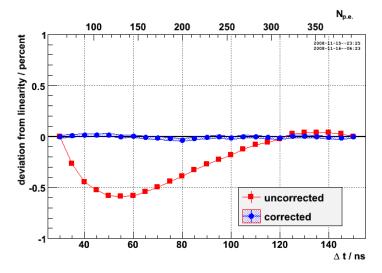
Use two different methods to measure the PD Integral Non-Linearity:

Optical Filters: LED light is attenuated by 3 optical filters

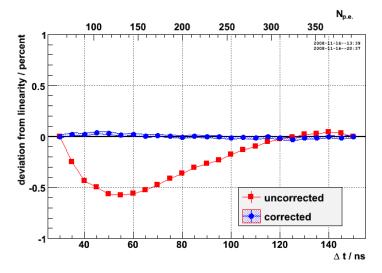
→ 8 series of measurements, but: large errors due to insufficient knowledge of the filter transmittance

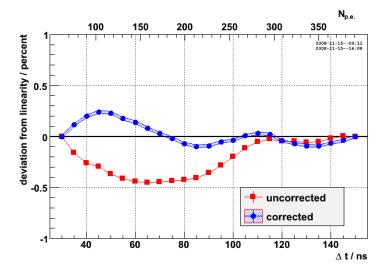

The filters have been recalibrated recently!

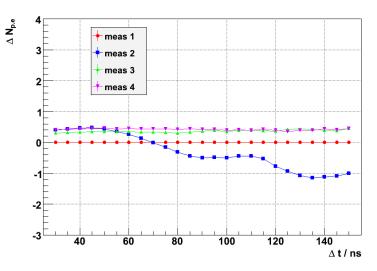
Pulse Length: linear variation of LED light (on photo cathode) is achieved by varying the length of a rectangular LED pulse (5 ns steps from 30 ns to 100 ns)


⇒ most promising method so far!

Allows to measure (control) the PD non-linearity at permille level!


Daniela Käfer


This measurement is used as a reference for further measurements taken with the "pulse-length" method in the following days.


After correction with the reference measurement, the non-linearity can be controlled to below permille level precision: $NL \ll 0.1\%$.

After correction with the reference measurement, the non-linearity can be controlled to below permille level precision: $NL \ll 0.1\%$.

Interestingly the first measurement taken after the one used as a reference cannot be corrected satisfactorily: $NL \approx 0.25\%$.

Ordering (in time) in which the previously shown measurements have been taken.

PD: Differential Non-Linearity (DNL)

Two further methods have been developed to measure the PD Differential Non-Linearity:

apply a 4-hole mask to the 2×2 MAPM; measure the Mask: PD response to LED pulses through each hole and one pulse simultaneously through all four holes:

$$\Rightarrow$$
 DNL = $(P_1 + P_2 + P_3 + P_4)/P_0 - 1$

However, the measurement has not yet been realized.

Double Pulse: Measure the PD response to two different LED pulses P_i and $P_i + p$ (where $P_i \gg p$); vary P_i to determine DNL over the entire range ⇒ analysis of measurements is ongoing, but early

LCWS'08

16-20/11/2008

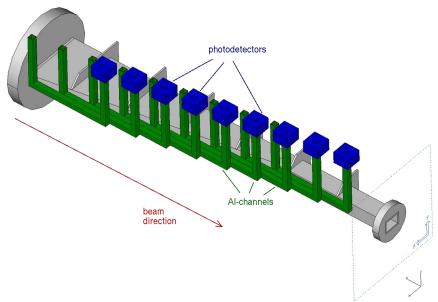
results look promising!

Testbeam, PD Linearity, Prototype Design

Prototype Design

Cherenkov Detector

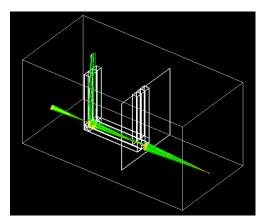
ILC Cherenkov Detector I


How it would look like in the ILC:

- beam stay clear of 2 cm of the beam pipe
- tapered beam pipe with thin exit-window to avoid the creation of wake fields as much as possible...
- staggered aluminum channels (U-shaped pipes)
 - * one end occupied by an LED for calibration purposes
 - * the other end equipped with a photodetector
- each aluminum channel equipped with its own gas system (still needs a lot of design & engineering work)

Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

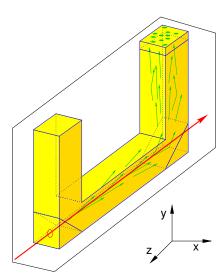
ILC Cherenkov Detector II



Daniela Käfer

Simulation of the testbox:

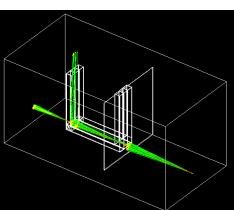
- 2 channels of polished aluminum
- thin entrance window (0.3 mm aluminum)
- the photodetectors are not simulated in GEANT;
 - choose a modular setup to be able to quickly exchange different photodetectors

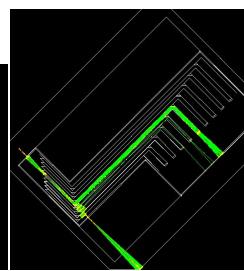

vacuum chamber filled with C₄F₁₀

Testbeam Results Detailed Photodetector Me Some Simulated Events one eincident Vacuum chamber filled with C4F10 two e incident

Advantages of U-shaped Channels

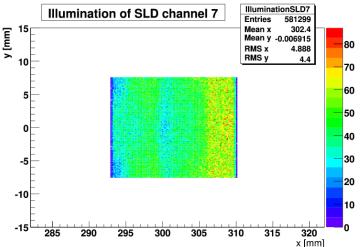
- no synchtroton radiation incident on the photodetectors
- no (or much less) crosstalk between different channels (compared to a layout in the x/z-plane)
- only \approx 2-3 reflections → reflectivity does not have to be extremely good (e.g. $\approx 90\%$ sufficient)




Crosstalk: SLD vs Prototype

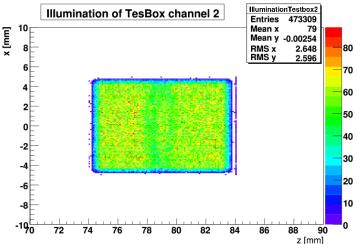
Comparison: U-shaped testbox versus planar SLD-layout

⇒ no, or at least, largely reduced crosstalk!



Festbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

Crosstalk: SLD vs Prototype


Simulation: electrons incident in the middle of the channel SLD: asymmetry clearly visible where a uniform distribution is expected

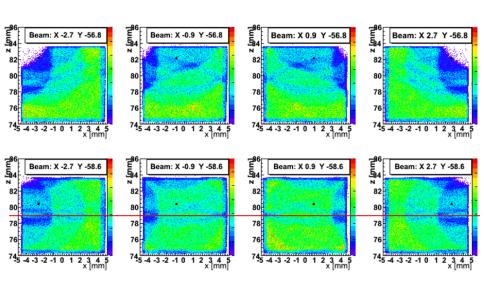
Daniela Käfer

Detailed Photodetector Measurements Prototype Design Summary & Outlook

Crosstalk: SLD vs Prototype

Simulation: electrons incident in the middle of the channel Prototype: no asymmetry observed for uniform illumination!

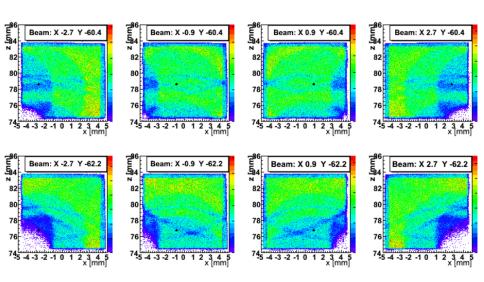
Prototype: Illumination Scan I


What effects could be observed from asymmetric illumination:

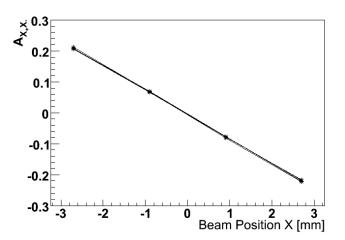
- define a grid of 4×4 points, where to shoot a very highly collimated electron beam (might be mimicked by laser photons)
- use 10,000 electrons per shot, no beam spread(!)
- calculate asymmetries from scans in x- and y-direction
 Note: (x,y)-plane from incident beam changes into (x,z)-plane for the photodetectors due to the U-shaped geometry of the channels.
- Asymmetry from asymmetric illumination is clearly visible in the data! ⇒ Will try to make use of 2 × 2 MAPM and even a newly aquired 8 × 8 MAPM to resolve electron position (energy) spectra inside a channel!

Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

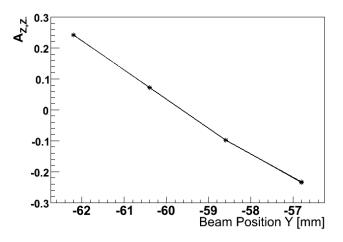
Prototype: Illumination Scan II



Daniela Käfer


estbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

Prototype: Illumination Scan II



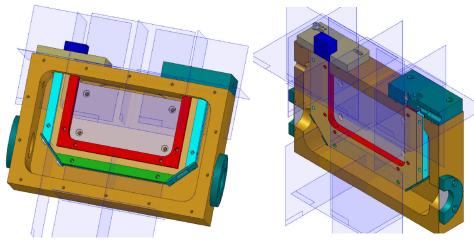
Daniela Käfer

Maximum intensitiv moves from negative to positive $x \Rightarrow Asymmetry!$

 $A_{x,x}$: 4 graphs for 4 different x-pos. (y fixed) \Rightarrow good linearity!

Maximum intensitive moves from negative to positive $z \Rightarrow Asymmetry!$

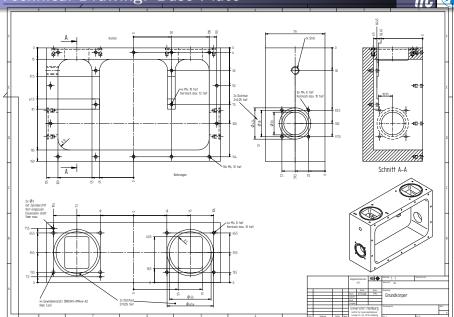
 $A_{z,z}$: 4 graphs for 4 different y-pos. (x fixed) \Rightarrow good linearity!


What do we want to study?

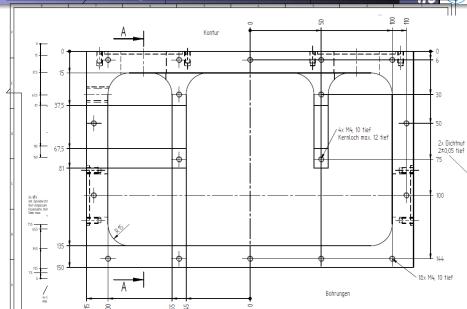
- different photodetectors at once
- crosstalk between channels
- different readout modes, depending on photodetectors, e.g. multianode photodetectors, SiPMs. etc.
- different calibration systems, i.e. either via LED- or laser-light (housing or thin throughput window)
- effect of wall thickness / beam spread...
- but, most importantly: the entire readout chain!

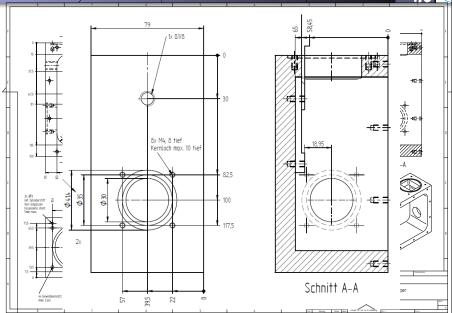
m Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

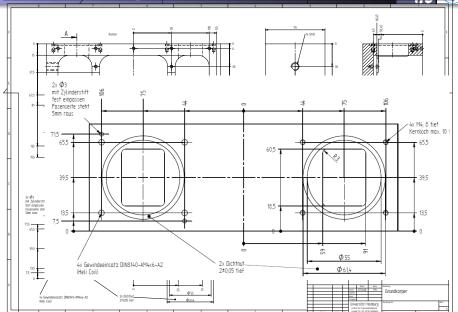
Prototype Design II

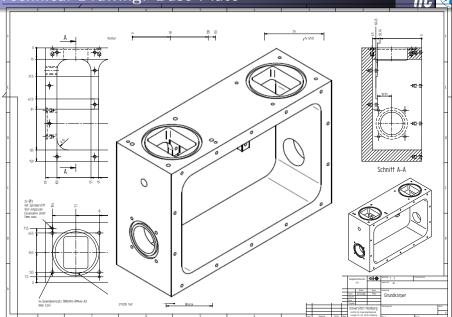


- Aluminum box with two channels & thin inter-channel wall (0.3 mm)
- flanges for a calibration system (LED-housing or laser) and for photodetector modules (quick & easy exchange)


Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook


verview Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook


v Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook


Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

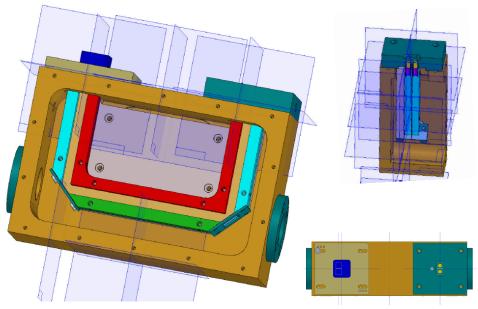
Testbeam Results Detailed Photodetector Measurements Prototype Design Summary & Outlook

& Outlook

Summary

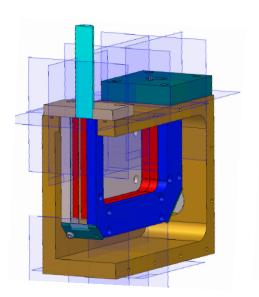
Summary & Outlook

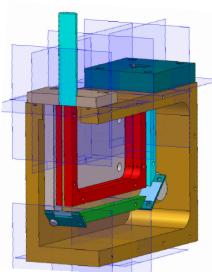
- First testbeam period with the SLD Cherenkov detector has been very useful \rightarrow reflectivity, crosstalk!
- Electronics & photodetector measurements are ongoing different methods to measure the PD linearity (INL, DNL) have been developed and show promising results
- Linearity measurements challenging due to many dependencies (temperature \leftrightarrow HV-heating, inherent QDC non-linearity, etc.) But: desired precision is achievable!)
- Design of the prototype (testbox) is complete as of Nov.10 now, construction is ongoing (using resources @ Univ. of Hamburg)
- Prototype simulation has been developed & studies are ongoing. First results show possibilities for further measurements



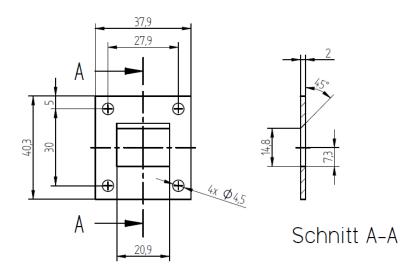
Technical Drawings

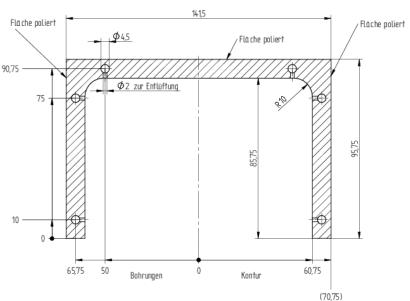
Colorful 3D-Model


Prototype Design: 3D-Model



Prototype Design: 3D-Model




Technical Drawing: Inner Windows

Technical Drawing: Mounting for LEDs

