
ILC Main Linac Alignment Simulations using Conventional Techniques and Development of Alignment Model John Dale LCWS08 & ILC08

Introduction

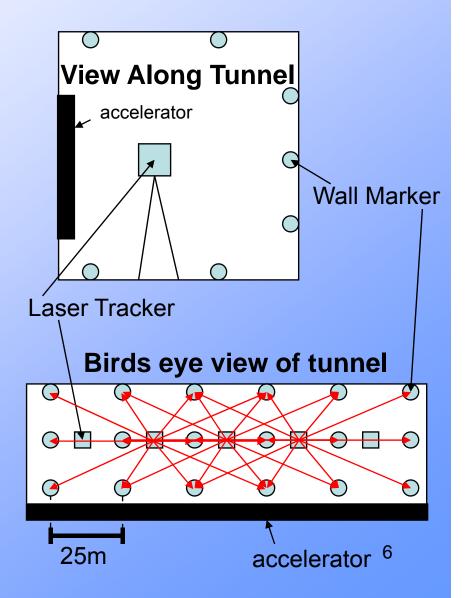
Presentation in two sections

- Section 1.
 - ILC Main Linac Alignment Simulations using Conventional Techniques
- Section 2.
 - Simple mis-alignment model for the ILC

Section 1

ILC Main Linac Alignment Simulations using Conventional Techniques

Introduction

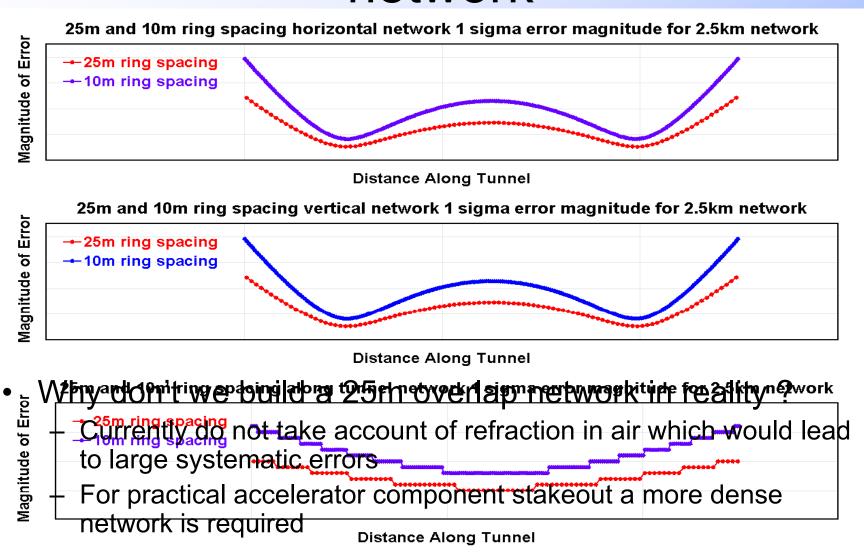

- Aim Of the Work :
 - Look at how well the ILC Main Linac can be aligned using conventional measurement techniques and software
- There are many Conventional Methods for accelerator alignment. The method used in this talk is as follows.
 - Measurement of a network of reference markers using an instrument such as a laser tracker
 - Measurements of a small number of Primary Reference Markers (PRM) using, for example GPS transferred from the surface.
 - Combining all measurements in a linearised mathematical model to determine network marker positions
 - Using adjusted network to align Main Linac
 - Using Dispersion Matched Steering (DMS) to adjust correctors to minimise emittance

Outline

- Network layout
- Network adjustment using PANDA
- Network adjustment simulations without PRM
- Accelerator mis-alignment
- DMS Simulations without PRM
- Introduction of PRMs using GPS
- GPS network adjustment simulations
- GPS DMS simulations
- Future work

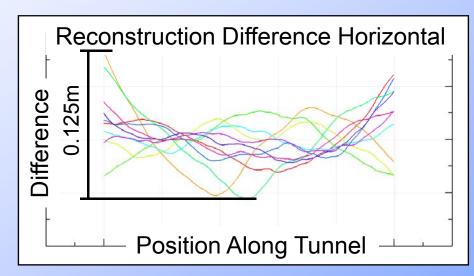
Network Layout

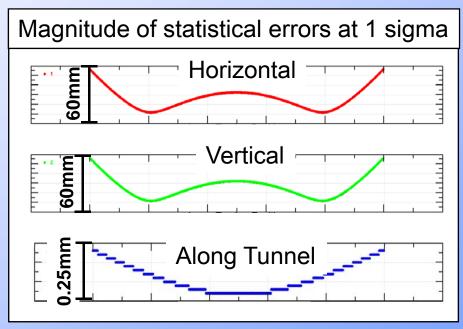
- Rings of 7 markers placed every 25m
 - Would like every 10m but current adjustment software not capable
- Network is Measured by a Laser Tracker
 - Laser tracker is placed between marker rings
 - measures 2 rings up and down the tunnel
 - statistical measurement Errors
 - Distance: 0.1mm+0.5ppm
 - Azimuth: 0.3 mgon (4.7 µrad)
 - Zenith : 0.3 mgon (4.7 μrad)
 - Errors estimated by experienced surveyors and laser tracker operators from DESY
 - ignoring all systematic errors from refraction in tunnel air (top hotter than bottom)

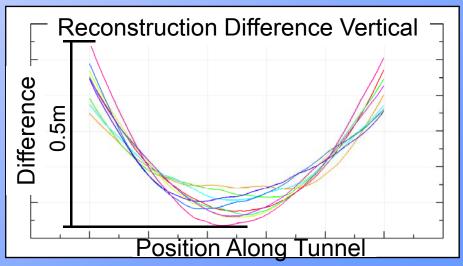

Network Adjustment using PANDA

- PANDA is a software package which can design, optimize, adjust (solve for positions) and assess 3D networks
- It is the commercial package used by the DESY geodesy group to adjust their networks
- The network described above is simulated using JAVA code, along with the required laser tracker measurements.
- Simulated measurements are fed into PANDA to produce the adjusted reference network
- Adjusted reference network is used to align the accelerator
- Currently a memory problem in PANDA
 - Cannot add enough positions and measurements to simulate whole ILC tunnel with 10m network spacing
 - Using 25m spacing for these simulations

Comparison of 10m and 25m network

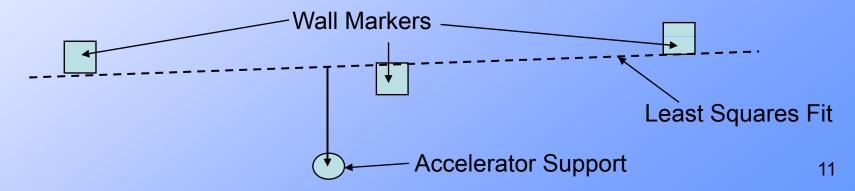

- What does this mean for the simulations
 - The laser tracker measurements have errors
 - fixed term of 0.1mm and
 - term scaling with distance 0.5ppm
 - The laser tracker measurement errors will be
 - 10m spacing network the maximum distance measured is ~15m ± 0.1075mm
 - 25m spacing network the maximum distance measured is ~37.5m ± 0.1188mm
 - Measured distance has more than doubled but error has not
 - So a 25m overlap network will have smaller errors than a 10m overlap network.
 - We have verified this is in a short tunnel section (next slide)


Comparison of 10m and 25m network

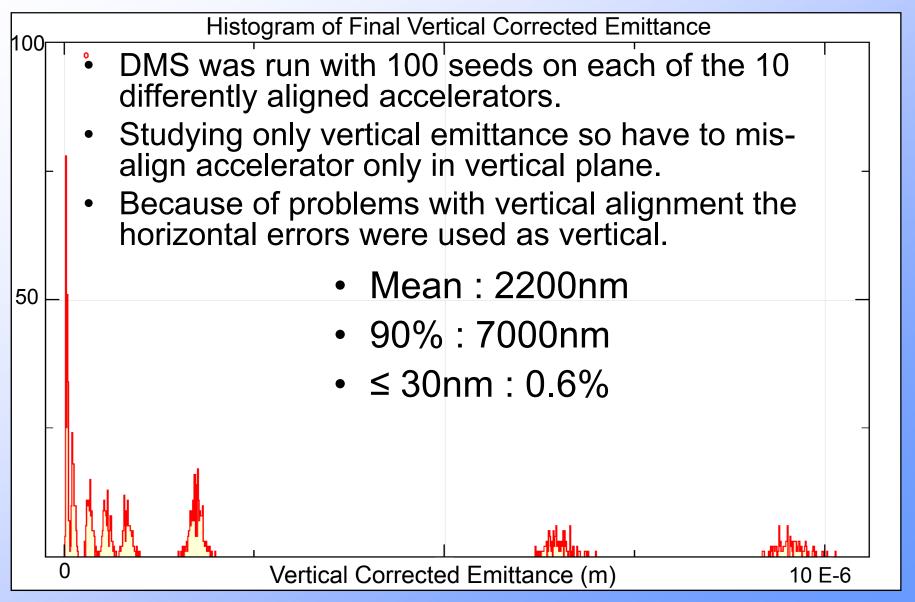


Network Simulation

- Vertical and horizontal errors computed by PANDA are very similar (as expected from network geometry)
- 10 Reference Networks were simulated in JAVA:
 - length 12.5km with
 - 25m network ring spacing
- And adjusted in PANDA
- Problem with vertical adjustment is under investigation



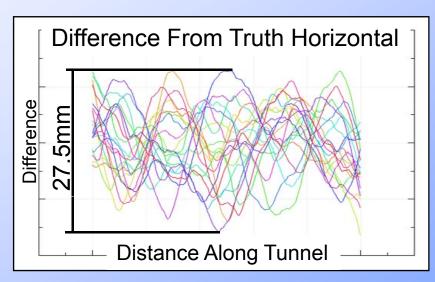
Main Linac Mis-alignment

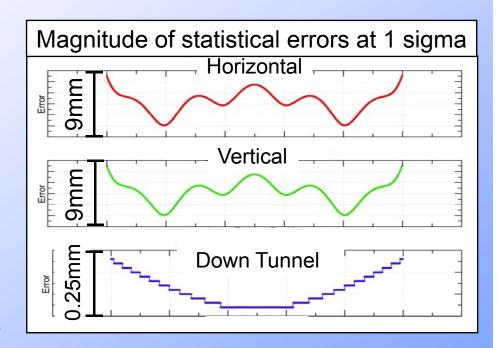

- Main Linac is mis-aligned by moving the accelerator structure supports from their nominal positions to follow the shape of the adjusted network
- The mis-alignment is calculated by:
 - finding the closest 3 middle wall marker positions to the support
 - fitting a straight line through the wall marker adjusted positions
 - Using the fitted straight line to determine the required support position
 - Note: this doesn't reflect how stakeout is done in practice

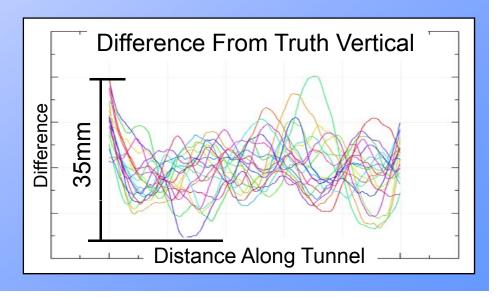
Simulation of DMS using Merlin

- DMS simulations using Merlin (a C++ based library for particle tracking)
- The Merlin based ILCDFS package
 - Is performing the tracking through the curved main linac (positron side)
 - It has implementation of the Beam Based Alignment method based on Dispersion Matched Steering
- Dispersion Matched Steering (DMS)
 - Attempts to locally correct the dispersion caused by alignment errors in magnets and other accelerator components.
 - Adjusts correctors to bring dispersion to its nominal value and preserve the emittance along the Main Linac (ML)
 - Parameters used here
 - Starting emittance 20nm
 - A nominal beam starting energy 15GeV → 250Gev at exit
 - Initial energy of test beam is 20% of nominal beam
 - Constant gradient adjustment of -20%

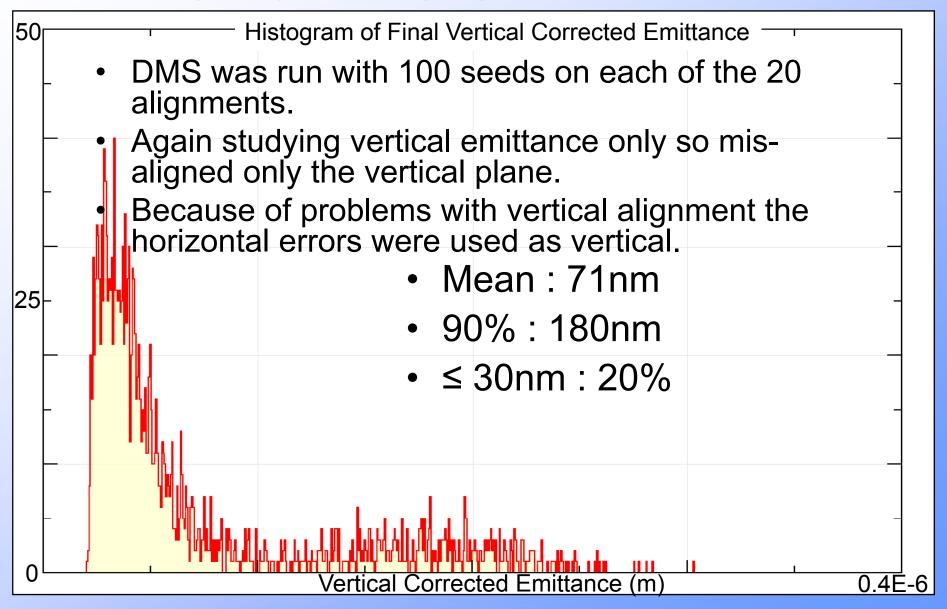
DMS Results




Introduction of Primary Reference Markers (PRM) using GPS


- Primary Reference markers introduced every 2.5km
- They are a primary measurement of a marker already in the network
- Could be measured by GPS on the surface and transferred underground via access shafts.
- Surface-to-tunnel transfer is not simulated here explicitly
- Only assume an effective position accuracy in tunnel
- Appears in PANDA as a baseline measurement (vector difference between points)
 - Currently using a simple diagonal covariance matrix for PRM errors in tunnel
 - Assuming standard deviation error of 10mm in all directions

Network Simulations with PRM


- Use PANDA to calculate error propagation through network
- Looks plausible
- 20 Reference Networks were simulated in JAVA
 - Length 12.5km
 - Including GPS every 2.5km
- and adjusted using PANDA
- Problem with vertical adjustment under investigation at DESY and by authors of PANDA

GPS DMS Simulations

Future Work

- Re-run network simulations with PANDA at 10m interval spacing when it has been fixed
- Simulate stake out process
- Simulate transfer of GPS co-ordinates into tunnel
- Improve PRM covariance matrix
- Confirm PRM network adjustment using different software
- Confirm DFS using different code

Summary

- Without primary reference markers it would be impossible to achieve the required emittance
- Although optimistic assumptions for network and PRM errors were used ...
- ...the emittance improves insufficiently with primary reference markers:
 - only 20% are in spec (below 30nm)
 - 90% value is 180nm (6 times too large)
- More work is required to prove the adjusted network is correct
- Emittance results need to be confirmed with a different code

Section 2

Simple mis-alignment model for the ILC

Introduction

- There has been work on the development of a simplified alignment model which can be used by LET community to mis-align the ILC for beam dynamics simulations.
- Model uses a pseudo random walk from one PRM to the next
- The PRM are used to correct the random walk

The Present Model

 Random walk (y) parameterized as:

$$\theta_{j,n+1} = \theta_{j,n} + a_{\theta} + \Delta \theta_{syst}$$

$$y_{0,j,n+1} = y_{0,j,n} + a_{y} + l_{step} \theta_{j,n} + \Delta y_{syst}$$

$$y_{0,j,0} = y_{p,j}$$

$$0 \le n \le N_{rfpt}$$

• Errors (stat. and sys.):

$$\sigma_{y,n,stat.} = \sqrt{l_{step}^2 a_{\theta}^2 \frac{n(n+1)(2n+1)}{6} + a_y^2 \frac{n(n+1)}{2}}$$

$$\sigma_{y,n,syst.} = l_{step} \Delta \theta_{systematic} n \frac{(n+1)}{2} + n \Delta y_{systematic}$$

Parameter values
Based on LiCAS Train

 $a_{\theta} = 55.4E-9$ $\Delta \theta_{\text{syst}} = -260E-9$

ay = 5E-6

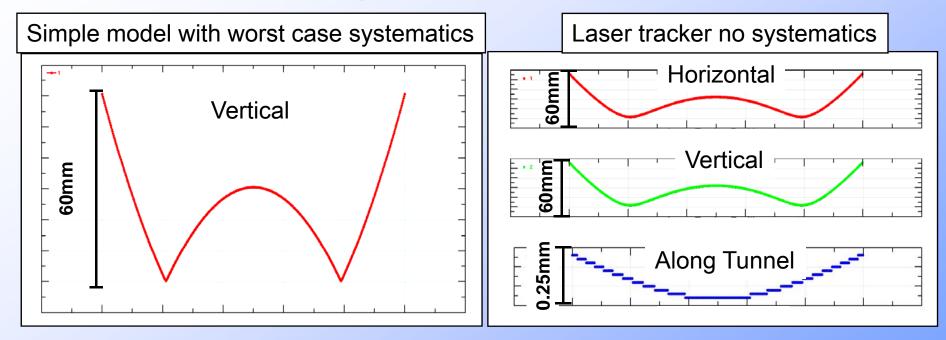
 $\Delta y = -5.3E-6$

 $\sigma_{y-primary} = 10$ mm

Systematics dominate The LiCAS Train

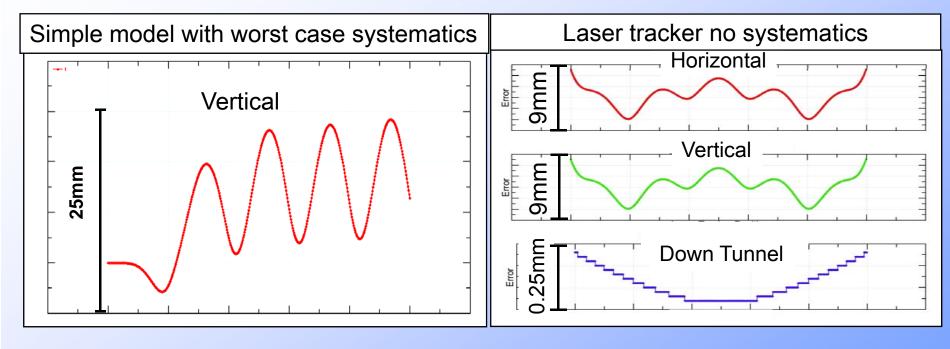
Correction (yc): Error weighted average fit (parabolic)

$$y_{j,n} = y_{0,j,n} + \left(y_{0,j,N} - \frac{y_{P,j+1}}{\sigma_{y-primary}^2} + \frac{y_{0,j,N}}{\sigma_{y-0,j,n}^2}\right) \left(s_j(0,n)/s_j(0,N)\right)^2$$


DMS simulation with simple misalignment model

- Freddy and Kiyoshi used the above model as input to DMS simulations
- Simulations seems to show no problem with emittance
- Freddy used 2mm vertical PRM error → too optimistic. 10mm is more realistic
- And there are more problems with the model ...

Error Curves Without PRM


- Without PRM survey is a random walk down tunnel
- Determine the error propagation plots for the simple model:
 - Simulate 2000 random walks with systematic error parameters varied at worst case range
 - Note: Statistical errors negligible compared to systematic
 - Fit straight line to each random walk
 - Compute residuals for each random walk
 - Plot standard deviation at each point over all runs
- Compare to PANDA's error propagation for laser tracker method

Error Curves No PRM

- Form and magnitude of both errors are similar
- Simple model has sharper turns compared to laser tracker because systematic dominated

Error curves with PRM

- Error shape expected to be similar
- Cleary different
- Asymmetry in errors of simple model with PRM
- Model's errors becomes larger than expected

Why does it not work

Errors on the random walk are defined to be 0 error at the start

 Errors on PRM are random around a arbitrary straight line

Cannot compare these two directly

Need new model

How To Improve the model

- More work is required to be able to generate reference networks for LET simulation
- Possible methods for improving may be:
- 1) Improve the exiting simple model
 - random walk down entire tunnel
 - Fit straight line
 - Randomly generate PRM around fit line
 - Combine "in a way" which produces realistic adjusted networks
 - Not clear how to do this yet

How To Improve the model

- 2) Simplified Linear algebra model for LiCAS type train
 - Represent each train stop as a set of baseline measurements
 - add PRM baseline measurements
 - Use network adjustment software (eg PANDA) to produce a large number of network simulations
 - Simulations can be distributed to beam dynamics simulations community

How To Improve the model

- 3) Full linear algebra model of LiCAS train
 - Develop a full linear algebra model for a LiCAS train
 - add PRM baseline measurements
 - Use model to produce a large number of networks
 - Simulations can be distributed to beam dynamics simulations community
 - Very Difficult to achieve this in short term

Summary

 Currently no model exists which can generate a realistic representation of an ILC reference network

 Our current assumption, that there is no problems with alignment is flawed

 Need to re-run DMS studies with a realistic adjusted network

Conclusions

- Conventional Methods without PRM will not be suitable for ILC alignment
- Conventional Methods with PRM don't appear to be good enough to align, but more work is required to verify
- Current simplified Mis-alignment model is flawed
- Need new simplified alignment model

Acknowledgements

 Markus Schlösser From DESY, geodesy group for help with PANDA

 Freddy Poirier for his help in using MERLIN

Armin Reichold