Surface study at KEK

 sponge cleaning
 special single-cell cavity with de-toutchable Nb-samples

T. Saeki on behalf of Jlab-FNAL-KEK SO study collaboration LCWS08 at Chicago

17 Nov. 2008

Sponge cleaning study with Nb samples

- HPR + ethanol rinse / degreaser were introduced recently because HPR-only seems not enough to eliminate FE. And quality control of HPR is still very difficult. Usage of highpressure water (~10 Mpa), UPW quality controletc.
- Direct physical/mechanical sponge wipe can improve the performance? Even shorten the duration of HPR / reduce the load of HPR?
- Prepare four Nb samples, sample-1, -1', -2, -2'.
- Sample-1, -1': BCP(30um)+EP(70um) + U.P.W. rinse.
- Sample-2, -2': BCP(30um)+EP(70um) + U.P.W. rinse + sponge cleaning.
- Compare sample-1 and sample-2 by FS-SEM at Jlab.
- Compare sample-1' and sample-2' by XPS at KEK.

EP(70 um) of Nb samples at Nomura Plating

Al cathode

V = 8 ~ 13 (V), I = 3 ~ 23 (A) with oscillation, T= 25 – 50 $^{\circ}$ C w/o T control. [Nb] in EP acid = 4.0 ~ 6.2 g/L during the EP of two samples. We expected sulfur contamination by aged EP acid.

U.P.W. rinse and sponge cleaning

Moving into a clean-room (class-1000) after EP(70 um)

Ultra Pure Water rinse (20 min)

Wipe 10 times for each arrow = 40-times wipes in total

Nb-sample-2

Nb-sample-1

Packing under U.P.W.

Packing in transportation container

Sample#1: many field emitters Low FE onset ~ 10 MV/m

Sample#2: much less field emitters Higher FE onset

Area inside circle is scanned by FS-SEM.

Lots of NbxOy particles (white)

Suspected bacteria (black worm)

Significantly reduced NbxOy particles

Somehow less bacteria growth, but new type of Contamination (black particulate)

XPS Analysis of KEK-type Nb-sample-1' & 2' (BCP+EP w/ & w/o sponge cleaning) at KEK

First wiping/fitting test of proto-type sponge-cleaner for single-cell cavity

The single-cell cavity was EP'ed and UPW-rinsed before the sponge-cleaning test.

Insertion of sponges

Expansion and rotation of sponges inside cavity

Feeding UPW during the rotation of sponges for 1-2 minutes.

Draining UPW inside the cavity **Drained UPW** to a container

Drained UPW was kept in a container to analyze the components/contamination.

Analysis methods

- Filtering drained UPW (10L) through the filter-paper of 0.20μm
 - → Condensation of filtered UPW (10L) to 70 ml.
 - → Ion Chromatography (IC) analysis for filtered /condensed UPW (70 ml).
- Residuals on the filter-paper → Optical Microscope → Component-analysis by X-ray fluorescence (XRF) analyzer

Optical Microscope

XRF

Result of IC analysis

- 4.9 mg/L of F was detected from filtered/condensed UPW (70ml).
- Sulfur ion (S, SO₄, etc) was not detected. The components were different from that of EP acid.

Residuals on the filter-paper

Residuals look like fibers/particles

Poly-Ethylene (PE) Sponge

PE sponge fibers

Blue particles in PE sponge fibers. We are not sure what these particles are, but vendors normally mix non-flammable materials in chemical products. Anyway, we need to ask the vendor what they are.

Results of XRF

	Sponge test UPW			Beaker sponge test UPW			PE sponge		
	(residuals on filter-paper)			(residuals on filter-paper)			(used in the sponge test)		
	Peak	Peak	Sample	Peak	Peak	Sample	Peak	Peak	Sample
Κα	Position	intensity	/Blank	position	intensity	/Blank	position	intensity	/Blank
	(d e g)	(k c p s)	(Ratio)	(deg)	(k c p s)	(Ratio)	(d e g)	(k c p s)	(Ratio)
Μο-Κα	20.295	1.983	0.95				20.328	1.536	0.74
Ga-Kα	38.923	1.394	1.07	38.918	2.235	1.25	38.933	1.646	1.27
Zn-Kα	41.799	1.339	0.77	41.783	2.554	1.96	41.802	10.894	6.26
Cu-Kα	45.015	2.926	1.14	45.024	4.037	1.01	45.028	2.322	0.90
Ni-Kα	48.673	6.474	1.02	48.671	7.717	1.11	48.648	7.794	1.23
Fe-Kα	57.522	74.235	1.09	57.501	81.77	0.88	57.499	69.124	1.02
Mn-Kα	62.956	3.576	1.16	62.941	3.92	0.93	62.972	2.67	0.87
Cr-Kα	69.348	18.595	1.09	69.352	22.653	1.15	69.325	23.02	1.34
Ca-Kα	113.185	2.242	1.35	113.17	2.665	0.99	113.209	1.154	0.69
Κ-Κα	136.656	0.499	-	136.713	0.283	1.40	136.758	0.779	-
CI-Ka	92.887	0.824	3.04	92.878	0.348	1.15	92.852	0.399	1.47
S-Ka	110.846	4.602	4.29	110.892	1.787	1.44	110.854	1.406	1.31
Ρ-Κα	141.12	5.409	21.38	141.145	0.639	1.15	141.163	0.247	0.98
Si-Kα	109.102	4.817	10.56	109.103	2.944	4.59	109.12	1.792	3.93
Al-Kα	144.81	0.772	2.21	144.779	0.51	2.49	145.079	3.03	8.66
Mg-Kα	45.346	0.083	4.61	45.293	0.047	1.81	45.302	0.127	7.06
Na-Kα	55.349	0.032	-	55.336	0.038	1.90	55.307	0.053	_

Phosphorus (P) contamination might come from the pipes and flanges, other BCP'ed cavities?

PE sponge rinse test in a beaker

- Pour 400 ml UPW into a 500ml-beaker.
- Wipe inside the beaker by PE sponge for 10 minutes.
- Filter the UPW in the beaker by filter-paper.
- Analyze residuals on the filter-paper.

Residuals on filter-paper from beaker UPW

Feeding UPW during the rotation of sponges for 1-2 minutes.

Draining UPW inside the cavity Pipes and flanges are commonly used for other **Drained UPW** BCP'ed cavities. This caused the contamination of Phosphorus (P) in the drained water. We will come to a container back this later.

Drained UPW was kept in a container to analyze the components/contamination.

Summary of sponge cleaning study

- Two samples w/ and w/o sponge cleaning after EP-process were analyzed by FS-SEM and XPS.
- lots of field emitters (NbxOy) were found on the sample w/o sponge cleaning.
- Few field emitters were found on the sample w/ sponge cleaning.
- Sulfur was not found by XPS on the samples.
- First wiping/fitting test of sponge-cleaner was done with a single-cell cavity after EP process.
- UPW was fed during sponge wipe, and drained water was analyzed by IC and XRF.
- Sponge fibers/particles and S, P, Cl, F were found in the drained water.
- Next step: Can fibers/particles be removed by HPR? Selection of new sponges? Collaboration with sponge vendor for special (contamination-free) sponge?
- More detailed information can be found at http://ilc.kek.jp/JFK-S0/

Nb samples and all parts were already delivered. (17 Oct. 2008).

Analysis of EP'd surface by using single-cell cavity with de-toutchable button Nb-samples

6 Nb-samples
BCP(10um)
Weight and thickness
measurements

First EP at STF/KEK
Recipe:

BCP(10um)+EP(20um) + UPW rinse

Special cavity with 6 sample-holes on the EP bed.

2 samples at equator

2 samples at iris

2 samples on a beam-pipe

6 samples were dressed on the special cavity

EP 20 um + UPW rinse (No ultrasonic-rinse)

Disassembly in class-10 Clean-Room

6 Nb-samples + sample-holders

Sample transportation suitcase

Pumping down inside the suitcase.

Pressure = 5E-5 Pa

Open gate-valve

Nb-samples + sampleholders are inside the suitcase.

Class-1000 Clean-Room

Sample transportation suitcase

Transportation of samples to XPS analysis room

Plan for KEK-type samples in special cavity

Backup slides

Melting test of sponges for EP solution

20 micro litter of EP solution (no dilution) was dropped on each sponge.

We used PVC sponge for the first Nb-sample test (EP + Sponge cleaning).

Poly-Ethylene (PE) sponge test with EP acid

Almost no corrosion of PE sponge by the EP acid.

No corrosion after dropping EP acid on PE sponge. Let's made a sponge-cleaning tool for single-cell cavity with PE sponge.

Nb-sample at beam-pipe

Nb-sample at iris