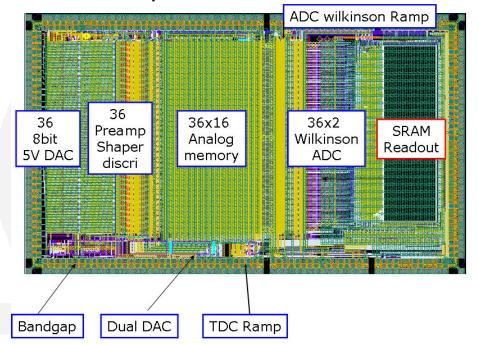
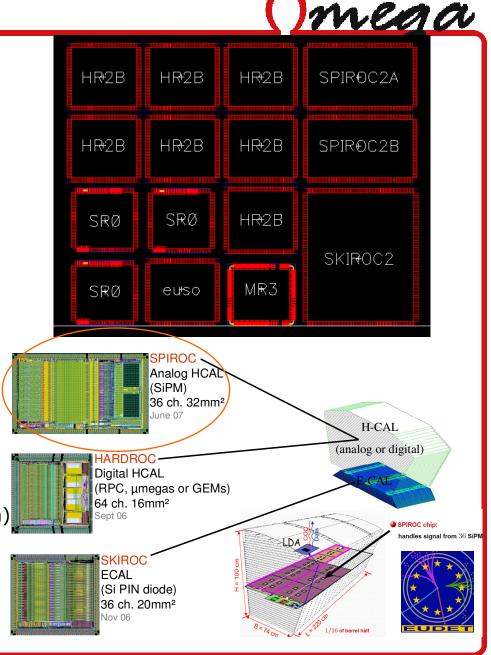
IN 2 P 3

()mega


Orsay Micro Electronic Group Associated

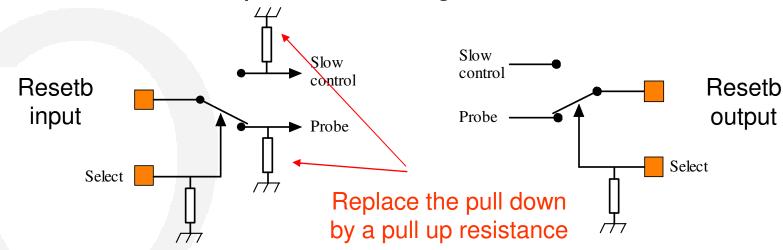
SPIROC status

SPIROC Status :


- March 2010 dedicated production run: 2 SPIROC prototypes are submitted:
 - A conservative prototype (SPIROC 2a) in which the major bugs of SPIROC 2 are fixed
 - A more agressive prototype (SPIROC 2b) in which the major bugs of SPIROC 2 are also fixed and some interesting improvements are added

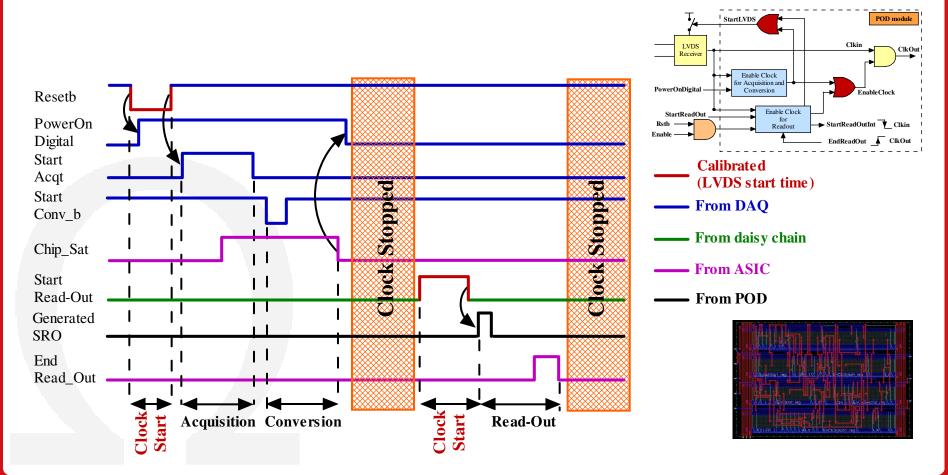
Fabricated in SiGe AMS 0.35 µm
Chip area: 30 mm² (4.2mm × 7.2mm)
 Packaging: TQFP 208
 36-channel ASIC
 Charge measurement
 Time measurement
 Autotrigger on MIP or spe
Power consumption: 25 µW/channel
 (in power pulsing mode)

Engineering run


- Reticle size: 18x25 mm2
 - 50-55 reticles/Wafer
 - 25 wafers needed
- Final arrangement:
 - « Calice » chips produced:
 - **7 Hardroc 2b** => ~9000 chips
 - **1 Spiroc 2a** => ~1200 chips
 - **1 Spiroc 2b** => ~1200 chips
 - 1 Skiroc 2 => ~1200 chips
 - Additionnal chips produced:
 - 1 Spaciroc : JEM EUSO experiement
 - 1 Maroc 3: for PMT readout
 - 3 Spiroc 0 (SPIROC « light » version)
 - => cost reduction for CALICE
- Production run launched last week

SPIROC 2a: modifications and improvements (1/3)

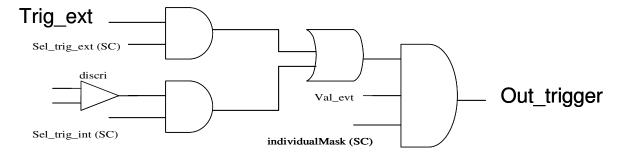
- Conservative version of SPIROC 2:
 - fix the slow control and probe bus :
 - By adding buffers in critical points as done in HARDROC2B
 - By correcting the Bug on the reset signal of the multiplexed probe and slow control register
 - » Active low reset forced to 0 when not selected
 - » Intempestive reset when register is unselected

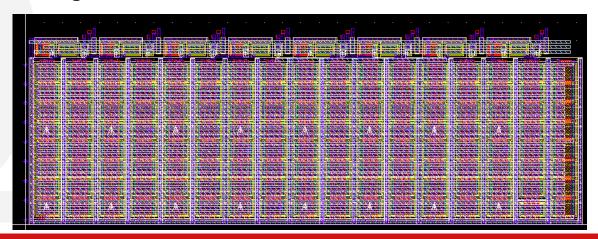


By putting a default Slow control set-up

SPIROC 2a: modifications and improvements (2/3) () mega

- Conservative version of SPIROC 2:
 - add the POD module for the 2 clock LVDS receivers to reduce idle power dissipation (already tested on Hardroc2)


SPIROC 2a: modifications and improvements (3/3) () mean


- Conservative version of SPIROC 2:
 - Put a OR36 output on a non selected pin
 - Decrease the consumption of the low gain preamplifier
 - The backup SCA is OFF when unused in order to save power

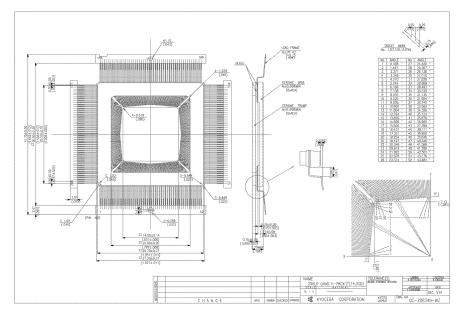
SPIROC 2b: modifications and improvements (1/2)

- Omega
- SPIROC 2a + the following improvements:
 - 6-bit Preamplifier gain adjustment per channel (25fF, 50fF, 100fF, 200fF, 400fF, 800fF): each preamp gain can vary from 25fF to 1.5pF with a step of 25fF)
 - External trigger input (LVDS)

 put the improved version of 8-bit input DAC with new spatial arrangement for a better matching

SPIROC 2b: modifications and improvements (2/2)

- <u> Omega</u>
- SPIROC 2a + the following improvements:
 - put the improved version of threshold 10-bit DAC
 - fix the first "zero-frame" by adding an active pull-up to reference voltage on ADC discri input (Not implemented as expected on SPIROC 2a because the risk would be too high)



Packaging

Packaging: TQFP 208 (made by US company I2A)

Dimensions: 28x28x1.4 mm

- NB: SPIROC 2a and 2b pin to pin compatible with the previous version except for the following pins:
 - A NC pin becomes the OR36 output (SPIROC2a and SPIROC2b)
 - The pin "pw_on_sca" and pin "pw_on_dac" have merged to liberate a pin for LVDS trig_ext signal (SPIROC2b)

Future SPIROC 3

- SPIROC 2a + SPIROC 2b + the following improvements:
 - New TDC to have 100 ps accuracy (just submitted last November on PARISROC 2 Chip)
 - Replace the ADC ramp by an optimized one
 - Replace the ADC discriminators by an improved one (PARISROC)
 - 8-bit input DAC: auto-regulation with respect to detector temperature
 - "Powering-up mode" of SCA columns to save power:
 - SCA columns are powered only when they are used
 - New improved and optimized digital part
 - Possibly Wei's input stage after testing
 - Possibly new I2C slow control interface

Conclusion

- March 2010: PRODUCTION RUN
- Schedule: Delivery expected =>next summer
 - Wafers by end May 2010
 - Packaging in June 2010
 - Tests in July 2010
- SPIROC 2a chip :
 - Conservative prototype: major bugs fixed
- SPIROC 2b chip :
 - Innovative prototype with « controlled » improvements also submitted
- Both chips (almost) pin to pin compatible