Higgs boson pair production at a photon-photon collision in the two Higgs doublet model

Daisuke Harada (Sokendai, KEK)

E. Asakawa (Meiji-Gakuin), S. Kanemura (Toyama), Y. Okada (KEK), K. Tsumura (ICTP)

Introduction

The Higgs sector is the last unknown part of the standard model.

Higgs potential

$$V = \frac{1}{2}m_h^2 h^2 + \frac{1}{3!} \lambda_{hhh} h^3 + \frac{1}{4!} \lambda_{hhhh} h^4 + \cdots$$

In the SM, tree level hhh coupling is given by

$$\lambda_{hhh}^{\text{SM}} = \frac{3m_h^2}{v}$$

It is important to measure the Higgs mass and the Higgs self-coupling.

- Test for the Higgs potential
- Search for New Physics effect

Measurement of hhh coupling

Measurement at collider experiment

LHC (SLHC)
$$gg \to hh$$

$$\text{ILC} \qquad e^+e^- \to Zhh \qquad e^+e^- \to hh\bar{\nu}\nu$$
 PLC $\gamma\gamma \to hh$ $\gamma \sim W, t$ h My talk focus on this process. $\gamma \sim h$

Photon Linear Collider (PLC) is optional experiment for ILC

We estimate sensitivity of hhh coupling at the PLC.

We calculate $\,\gamma\gamma \to hh\,\,$ in THDM

$\gamma\gamma o hh$ process

We consider anomalous hhh coupling

$$\lambda_{hhh}^{\text{SM}} = \frac{3m_h^2}{v}$$

$$\lambda_{hhh} = \lambda_{hhh}^{SM} + \delta\lambda = \lambda_{hhh}^{SM} (1 + \delta\kappa)$$

SM diagrams

pole

box

Estimation of hhh sensitivity

E.Asakawa, D. Harada, S. Kanemura, Y. Okada, K. Tsumura at TILC 08

Higgs Self Coupling Sensitivity

5

Photon linear collider (Eee < 500GeV) is useful to measure the HHH coupling for mH = 150-200.

$\gamma\gamma ightarrow hh$ in the <code>THDM</code>

We calculated $\gamma\gamma \to hh$ process in THDM with SM-like limit

- Non-decoupling effects
- Charged Higgs loop effects

Two Higgs Doublet Model

Higgs potential

$$\begin{split} V_{\mathsf{THDM}} &= \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 - (\mu_3^2 \Phi_1^\dagger \Phi_2 + \text{h.c.}) \\ &+ \lambda_1 |\Phi_1|^4 + \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^\dagger \Phi_2|^2 + \frac{\lambda_5}{2} \{ (\Phi_1^\dagger \Phi_2)^2 + \text{h.c.} \} \end{split}$$

Higgs doublets

$$\Phi_i = \begin{pmatrix} \omega_i^+ \\ \frac{1}{\sqrt{2}}(v_i + h_i + iz_i) \end{pmatrix} \quad (i = 1, 2)$$

gs doublets
$$\begin{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = R(\alpha) \begin{pmatrix} II \\ h \end{pmatrix} \\ \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = R(\beta) \begin{pmatrix} z \\ A \end{pmatrix} \\ \begin{pmatrix} \omega_1^+ \\ \omega_2^+ \end{pmatrix} = R(\beta) \begin{pmatrix} \omega^+ \\ H^+ \end{pmatrix} \qquad R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$\tan \beta = \frac{v_2}{v_1}$$
 $v^2 = v_1^2 + v_2^2 \simeq (246 \text{GeV})^2$

CP-even

h,H CP-odd A Charged bosons H^{\pm}

$$m_h^2 = \{\lambda_1 \cos^4 \beta + \lambda_2 \sin^4 \beta + 2(\lambda_3 + \lambda_4 + \lambda_5) \cos^2 \beta \sin^2 \beta\} v^2$$

$$m_H^2 = M^2 + \frac{1}{8} \{\lambda_1 + \lambda_2 - 2(\lambda_3 + \lambda_4 + \lambda_5)\} (1 - \cos 4\beta) v^2$$

$$m_A^2 = M^2 - \lambda_5 v^2$$

$$m_{H^{\pm}}^2 = M^2 - \frac{\lambda_4 + \lambda_5}{2} v^2$$

$$M = \frac{|\mu_3|}{\sqrt{\sin \beta \cos \beta}}$$
7

We consider following parameters

• SM-like limit
$$\sin(\alpha - \beta) = -1$$

Lightest Higgs has the same tree-level coupling as the SM Higgs boson and the other Higgs bosons do not couple to gauge bosons.

• Non-decoupling limit
$$M=0$$

In the THDM, extra Higgs boson loop correction is known as non-decoupling effect.

• rho parameter constrain $m_H \simeq m_A \simeq m_{H^\pm}$

$$m_H = m_A = m_{H^{\pm}}$$

We assume that the masses of the extra Higgs bosons degenerate.

New Physics effect on hhh coupling

S. Kanemura, Y. Okada, E. Senaha, C. P. Yuan

Effective hhh coupling

$$\Gamma_{hhh}^{ extsf{THDM}} \simeq -rac{3m_h^2}{v} \left[1 + \sum_{\Phi} rac{m_{\Phi}^4}{12\pi^2 v^2 m_h^2} \left(1 - rac{M^2}{m_{\Phi}^2}
ight)^3 - rac{N_c m_t^4}{3\pi^2 v^2 m_h^2}
ight]$$

 m_{Φ}^4 term appear in 1-loop correction

 H, A, H^{\pm} receive their masses from the VEV. We set M=0. heavier Higgs boson loop effect ~ 100% non-decoupling

Effective hhh coupling "extra Higgs boson / top" loop effect $\mathcal{M}(l_1, l_2)$ W boson and top loop diagrams $\gamma\gamma \to hh$ pole WWW, tW**~~~~** ~~~~***** ~~~~· WW, tW, tbox ~~~~ ~~~~ $\Delta \mathcal{M}(l_1, l_2)$ Additional one-loop diagrams (charged Higgs boson loop) pole H^{\pm} H^{\pm} H^{\pm} H^{\pm} ~~~<u>*</u> ~~~~<u>,</u> ~~~~ H^{\pm} H^{\pm} H^{\pm} ~~~~~ ·///// box ~~~~

$$m_{H} = m_{A} = m_{H^{\pm}} = 400 \, \mathrm{GeV}$$

$$m_{h} = 120 \, \, \mathrm{GeV}$$
 Sub cross section (++)
$$m_{h} = 120 \, \, \mathrm{GeV}$$
 Sub cross section (++)
$$m_{h} = 120 \, \, \mathrm{GeV}$$
 ThDM (2-loop)
$$m_{h} = 160 \, \, \mathrm{GeV}$$
 Sub cross section (++)
$$m_{h} = 120 \, \, \mathrm{GeV}$$
 ThDM (1-loop)
$$m_{h} = 160 \, \, \mathrm{GeV}$$
 SM (2-loop)
$$m_{h} = 160 \, \, \mathrm{GeV}$$
 SM (1-loop)
$$m_{$$

 $E_{\gamma\gamma}\sim$ 250 GeV Cross section is enhanced by the effect of $\frac{-\kappa_{hh}}{\Gamma_{hhh}^{\rm SM}}\sim$ 120 $E_{\gamma\gamma}\sim$ 400 GeV Threshold enhancement of top pair production $E_{\gamma\gamma}\sim$ 850 GeV Threshold enhancement of charged Higgs pair production

Full Cross Section

Photon luminosity spectrum

Ginzburg, et. al

$$d\sigma = \int_{\frac{4m_H^2}{s}}^{y_m^2} d\tau \frac{dL_{\gamma\gamma}}{d\tau} \left(\frac{1 + \langle \xi_2^{(1)} \xi_2^{(2)} \rangle}{2} d\hat{\sigma}(+,+) + \frac{1 - \langle \xi_2^{(1)} \xi_2^{(2)} \rangle}{2} d\hat{\sigma}(+,-) \right)$$

$$\frac{L_{\gamma\gamma}}{d\tau} = \int_{\tau/y_m}^{y_m} \frac{dy}{y} f_{\gamma}(x, y) f_{\gamma}(x, \tau/y)$$

$$\tau = \hat{s}/s, y = E_{\gamma}/E_{e}$$
 $y_{m} = \frac{x}{1+x}, x = \frac{4E_{e}\omega_{0}}{m_{e}^{2}}$

 $\langle \xi_2 \rangle$: mean polarization of the γ beam

 λ_e :electron helicity P_c :laser photon mean helicity 12

The full cross section is given from the sub cross section by convoluting the photon luminosity spectrum.

We use following values

Initial laser beam mean helicity $P_c = -1$ Initial electron helicity $\lambda_e = +0.45$

$$\sqrt{s}=$$
 350 GeV $m_h=$ 120 GeV

$$\sqrt{s} = 600 \text{ GeV}$$
 $m_h = 160 \text{ GeV}$

Threshold enhancement of charged Higgs pair production

For 250-400 GeV, charged Higgs boson loop contribution and the effective hhh coupling are important.

Conclusion

We calculate $\gamma\gamma \to hh$ in THDM with SM-like limit

- The cross section can be largely changed from the SM.
 - additional contribution of charged Higgs boson loop
 - Effective 1-loop hhh vertex enhanced by the non-decoupling effect
- The cross section strongly depend on m_h m_Φ \sqrt{s}

	THDM $m_{\Phi} = 450 \mathrm{GeV}$	200GeV	SM
$\sqrt{s} = 350 \text{GeV}$ $m_h = 120 \text{GeV}$	$\sigma\sim$ 0.3fb	$\sigma\sim$ 0.05fb	$\sigma\sim$ 0.05fb
$\sqrt{s}=$ 600GeV $m_h=$ 160GeV	$\sigma\sim$ 0.2fb	$\sigma\sim$ 0.3fb	$\sigma\sim$ 0.1fb

In the region between threshold of top pair production and that of charged Higgs $_{16}$ boson pair production, both the contributions are important.

Backup Slide

- (a) THDM 2-loop THDM with additional one-loop corrections to the hhh coupling $\mathcal{M}_{\mathsf{THDM}}^{\mathsf{2-loop}}(l_1, l_2) = \mathcal{M}(l_1, l_2, \Gamma_{hhh}^{\mathsf{THDM}}) + \Delta \mathcal{M}(l_1, l_2, \Gamma_{hhh}^{\mathsf{THDM}})$
- (b) THDM 1-loop THDM with the tree level hhh coupling

$$\mathcal{M}_{\mathsf{THDM}}^{\mathsf{1-loop}}(l_1, l_2) = \mathcal{M}(l_1, l_2, \lambda_{hhh}) + \Delta \mathcal{M}(l_1, l_2, \lambda_{hhh}) \qquad \qquad \lambda_{hhh} = -\frac{3m_h^2}{v}$$

(c) SM 2-loop SM with additional top loop correction to the hhh coupling

$$\mathcal{M}_{\mathsf{SM}}^{2-\mathsf{loop}}(l_1, l_2) = \mathcal{M}(l_1, l_2, \Gamma_{hhh}^{\mathsf{SM}})$$

(d) SM 1-loop SM with the tree level hhh coupling

$$\mathcal{M}_{\mathsf{SM}}^{1-\mathsf{loop}}(l_1, l_2) = \mathcal{M}(l_1, l_2, \lambda_{hhh})$$

(e) SM $+\Gamma_{hhh}^{THDM}$ SM with additional one-loop corrections (THDM) to the hhh coupling

$$\mathcal{M}_{\mathsf{SM}+\Gamma_{hhh}^{\mathsf{THDM}}}(l_1,l_2) = \mathcal{M}(l_1,l_2,\Gamma_{hhh}^{\mathsf{THDM}})$$

Anomalous hhh coupling

$$\lambda_{hhh} = \lambda_{hhh}^{SM} (1 + \delta \kappa)$$

Full Cross Section ($\delta \kappa$ dependences)

$$\lambda_{hhh} = \lambda_{hhh}^{SM} (1 + \delta \kappa)$$